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Although the properties of individual neurons are relatively well
understood, the manner in which large interacting networks of these nerve
cells produce mental activity remains almost a complete mystery. This is
due in part to the cowplexity of the central nervous systems of higher
animals as well as to the great difficulty of observing these systems with-
out «estroying them. But it may also be that processes such as those th:t
resu..t in storage and retrieval of memory are of unusual subtlety, in-
volving small changes in the activities of large numbers of neurons. Find-
ing what such changes occur and where and how memory is stored has proven
so difficult that, in a moment of Wagnerian passion, the question has been
called 'the lioly Grall of neurobiolopy.' [t is no exaggeration however
to conjecture that an understanding of the processes by which an animal
stores and retrieves memory might be the key to an understanding of the

organization of the central nervous system.

Many ways to store and retrieve information exist: £filing cabinets,
libraries and computers. But the fact that an animal's memory is held in
a living structure and is suc:essfully utilized even though the animal may
have no idea of where his memories are stored or how they are ordered, places
special requirements on theory. Current com»uter memories, for example,
:re made of elements in which yes/no information is recorded and which can
be recalled by addressing the location of an element. These computers per-
form sequences of elementary operations with incredible speed and accuracy,
completely beyond the capability of living cells. A basic problem in under-
standing the organization of memory in a biological system is to understand

how a vast quantity of information can be stored and recalled by a system



composed of vulnerable and relatively unreliable elements and with no know-
ledge of how or where the information has been filed. In what follows we
propose a model for the biological orpganization of memory which can be
realized using living cells and which displays properties of association

and generalization characteristic of animal mental processe:.,

Local vs. Distributed Storage

The brain is composed of vast nuribers of neurons (lO10 is the estimate
commonly given for humans) held tcgether, fed and cleaned by
various supporting structures, blcod vessels, and glial (meaning glue) cells.
It is thought that the information processing and storage functions of the
brain are accomplished by the neurons, the other tissue/iicupied primarily
with housekeeping. A neuron collects information in the form of electrical
potential and currents in its dendrite system from the axon >ranches
of other neurons. There potentials are passively propagated to the cell
body, where they are integrated. This inteprated potential then determines
the firing rate of the cell. The electrochenica. spikes that result proparsate
with minimal degradation over sometimes long distances alony the axon trunk
to all the axon branches. The information, contained in the frequency of
spiking or the number of spikes in a burst, is then cormmunicated chemically
across synaptic junctions from the axon terminels to the dendrite branches of
other neurons producing potentials in the dendrites:; thus the informa-
tion flow continues.

An imuediate question is: llow specific are the individual neurons? Do
thiese cells correspond, when they become active to highly specific actions,
perceptions, concepts or responses? Or are they simply part of larger struc-

tures, so that a single neuron is of importance primarily as a participant in
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a complex pattern of nerve cell activity? As is often the case in biolosi-
cal systems, both possibilities seem to be realized depending where or how
one looks in the nervous system.

Many invertebrates have nervous systems which are composed of a rela-
tively small number of cells precisely connected together, according to
genetic instructions. Certain of these cells seem to control a signifi-
cant fraction of behavior or respond to a particular, often very specific
set of input stimuli. Hany of these cells are morphologically identifiable
and recur in the same position from animal to animal. In a number of speciles,
many such cells are known where plharmacology, letailed connectivity,

and function are understood in great detail. Tigure 1 is

Figure 1 about iere

a sketch of the abdominal ganglion of the marine gastropod mollusc Aplysia
californica which shows some of these identified cells.

Aplysia, in common with nany animals, wit .draws when touched unexpect-
edly; the details of this reflex behavior have been worked out by Fric
Kandel, Ladislav Tau.. and others. Cell L-7, for example, controls
a large fragment of the withdrawal of the gill during this refle:.

One of the most interesting results of this work has been the demon-
stration that the reflex is modifiable in its course and amplitude, and that
the reflex will "habituate' if the gill is repeatedly touched. Illabituation
is more complex behavior than simple fatigue; further, habituation in Aplysia
and in higher animals are surprisingly similar.

Important for our consideration of memory, is the clear cut demonstr.u-—

tion, in this very simple example of learning, of the localization of the



-4 -

change involved to the strenpth of the synaptic junctions coupling the sen-
sory neurons, that becomes active when the animal is touched, and the motor
neuron, that, when active, cause the muscles to contract effecting the with-
drawal. (Kandel, 1976.)

In invertebrates, we seem to have 1 system where certain cells corres-
pond to a significant and specific fragient of behavior. Is the same true
in higher animals? To a certain extent there is precision of function.
Cerebral cortex sometimes displays a surprisingly precise organization.
For example, the parts of the cortex ccncerned with receiving inputs from
the visual system map the visual field onto the surface of the cortex in a
precise, though sjatially distorted, m:»o. The details of connections, for example,
the orientation selectivities of the ccrtical cells, have been shown to be precisel
specified, apparen:ly from birth, though they are modifiable to a degree
depending on early visual experience. (Lund, 1978.) And many other examples

exist. But can su:h specificity be the rule for all nervous system function?

A leading exponent of the view that a model of the brain can be based
on single nenuron specificity is lorace Barlow. le has proposed a set of
"dogmas'' that connect the observed properties of single neurons to psychologi-
cal function and brain organization, suggesting that ''the sensory system is
organized so as to achieve as complete a representation of the sensory sti-
mulus as possible with the minimum number of active neurons.'" '"Perception,"
he states, ''corresponds to the activity of a small selection from ... high
level neurons, each of which corresponds to a pattern of external events

of the order of c mplexity of the events symbolized by a word." (Barlow,

p. 371, 1972.)
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Neurons in this type of brain model have bcen unkindly characterized
by critics as "yellow volkswagen detectors' or 'grandmother cells,' i.e.,
cells which respond when and only when a yellow volkswagen or the appropri-
ate grandmother appears.

In an opposing point of view, one notes the anatomical homogeneity of
large regions of cerebral neocortex. Different areas, though showing im-
portant variation from region to region, are basically similar to each
other suggesting that one is looking at vari: tions on a subtle, possibly com-
plicated but repeated organizational scheme. Neocortex differs in this
regard from those older portions of the brain, for example, those in the
brain stem, which seem specially wired for specific purposes.

In addition, the evolution of neocortex has been extremely rapid--an exp.o-
sive growth of this area of the brain having occured in humans in only a few
million years. This suggpests that a simple method of organization is

repeated over and over by adding more cells and folding this cortical

surface to create more area so that the entire structure can be fitted

into a skull of reasonable volume. In addition, outside of a few well defined
regions, the results of damape to cortex are often diffuse and difficult to
describe, and have bLeen observed to depend more on the size of the leison

than on its exact location.

Such considerations led Karl Lashley to his proposal that nervous sys-

tem organization 1s distributed. He wrote:
It is not possible to demonstrate the isolated localization
of a memory trace anywhere within the nervous system. Limited
regions may be essential for learning or retention of a parti-
cular activity, but within such repions the parts are func-

tionally equivalent. The engram is represented throughout the
region. (p. 478.)



(Engram is Lashley's term for the physical change corresponding to menory.)

A similar controversy occured in the 19th centry between exponents of
cortical localization--the most extreme example 1s the phrenologist, Ga.l--
and those who favored a more holistic approach to brain ormanization, suciht
as Goltz, who felt functions were not so rigorously separated.

Actual brain organization no doubt shows trth ot these aspects. Even
in Aplysia, the large identifiable cells may pe ‘ticijate in many different
kinds of behavior. And in mammalian cerebral cortex, single cells may
display astonishing specificity of response, where only very precise con-

binations of stimuli will induce them to fire.

Binary vs. Analog

Probably the best known and most influential model of the brain is that
proposed in 1943 by Warren McCulloch and Walter Pitts. The history of this
work demonstrates the practical value of a good model: among other things,
the McCulloch-Pitts neuron and the logical notation developed by them in-
fluenced John von Heumann when e outlined the architecture of the first
modern digital computer. (von lleumann 1945.)

Neurophysiologists of that era weile tremendously impressed with the
easily visible action potential, the electrochemical cataclysm which trans-
mits information from one end of a neuron to the other. Action potentials

are "all or none,"

that is, they are th:re or they are not with no inter-
mediate stages.
This lead McCulloch and Pltts to anproximate the brain as a set of binary

e¢lements which were neurons that were either on or off. Tley used these

binary elemencs to realize the statements of formal logic. In the abstract
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of their 1943 paper they stated: ‘'because of thz 'all or none' character of
nervous activity, neural events and the relations between them can be
treated by means of propositional logic. It is found that the behavior of
every net can be described in these terms ... and that for any logical ex-
pression satisfying certain conditions, one can find a net behaving in the
fashion it describes.' (p. 115.)

We find in the 1943 paper much of the machinery familiar to those who
study automata theory: binary elements, threshold logic, and quantized
time, where the staté of the system at the n + 1 st time quantum reflects
the state of the inputs to the elements at the n th time quantum. The
main result of their paper was the proof that nets of such neurons were
perfectly general in that they could realize any logical expression. A
digital computer can be viewed as a machine constructed of McCulloch-Pitts
neurons.

Although binary logic was adequate to prove the theorems of the 1943
paper it was not satisfactory as a brain model. One of the most striking
aspects of the nervous system is its ability to perform in the presence of
noise and with unreliable elements. The nervous system also has the ability
to respond to related but differing stimuli and shows a degree of tolerance
to perturbations of its inputs, all properties difficult to realize with
logical devices, where deviations from perfect accuracy often produce
catastrophe. This point was amply clear to McCulloch and Pitts, although
not always to those who followed them.

In 1947, Pitts and McCullocl. wrote another paper explicitly discussing
these problems. With thei new 1wore restricted approach, although their

agsumptions were much more realistic, they could not expect a result of the
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generality they produced in 1943. They approximated inputs to the brain
as continuous valued distributions--not the discrete 0 and 1 of binary
logic--and used transformations and operations on these spatially distri-
buted inputs. They proposed a simple distributed model for the superior
colliculus, a midbrain structure which directs the eyes to important
points in space. It was known that the projection of the retina to the
colliculus forms a precise two-dimensional map of visual space on the

surface of the colliculus. (See Figure 2.)

Figure 2 about here

Pitts and McCulloch proposed that the colliculus takes the "weighted center
of gravity" of the continuous function describing cell activity on the sur-
fact of the colliculus and directs the gaze to that point.

This model strikingly forestadows later work on the colliculus with
its emphasis on the simultaneous activity of many neurons at once. As we
now realize, the colliculus may provide us with one of the best examples we
have of a distributed system. Although the retinal efferents that project
to the colliculus form a very precise, fine grained map, cells
later in the system, physically a few millimeters below the very precise
cells, respond to stimuli over a wide area of visual space. Thus we have
the apparently paradoxical situation--which seems to be true of other parts
of the brain as well--that great precision of response is generated by sys-
tems composed of cells which progressively show less and less selectivity
as the motor output of the system is approached. (McIlwain, 1976.)

McCulloch was very much aware of the importance of moving away from

the binary neuron model. As he stated in one of his last talks, "For our
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purpose of proving that a real ncrvous system could compute any number that
a Turing machine could compute with a fixed length of tape, it was possible
to treat the neuron as a simple threshold element. Unfortunately, this
mislead many into the trap of supposing that threshold logic was all one
could obtain in hardware or software. This 1is false." (McCulloch, p. 393,

1965.)

A Simple Model of a Distributed ilemory

Listen once more to Lashley.

Consideration of the nume 'ical relations of sensory and other

cells makes it certain, I believe, that all the cells of the

brain must be in almost constant activity, either firing or

actively inhibited. There is no great excess of cells which

can be reserved as the seat of special memories ... The same

neurons which retain the memory traces of one experizance must

also participate in countless other activities ... lecall

involves the synergic action or some sort of resonan:e among

a very large number of neurons ... From the numerical rela-

tions involved, 1 believe that even the reservation of indi-

vidual synapses for special associative reactions 1is impossi-

ble. (p. 479-480.)
From this point of view there are no privileged sites in the brain for che
storage of memory items in isolation from each other. This seems, at first,
very unpromising since individual memories would interfere with each other;
but, as we shall see the problem has a solution and memories so constructed
can function as well as local memories.

Lashley suggests, and we assume in our distributed models that what is
of importance in the operation of the system are activity pitterns simultan-
eous activities of many different neurons. We define a "trace' as the
elementary unit of organization that is processed as a whole and that is

large simultaneous spatially distributed pattern of individual neuron acti-

vities. It 1s possible to develop a mathematical structure which lets these
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activity patterns take on a life of their own and act very much like primi-
tive entities in their own right  Thus we have moved a step away from in-
dividual neuron discharges, which have become small components of the ele-
mentary units of nervous activity.

Ve denote such activity patterns (which will sometimes represent items to
"remembered'') by vectors: fl, fz, . fK [or, more precisely, N-tuples in
the N dimensional space composed of N neurons]. In a memory with local
storage the individual items would be stored separately. But in a distri-
buted memory they are storel--so to speak--on top of one another. How
then can they be distinguished?

To illustrate this basic point we construct a very simple model in
which a memory formed by simply takinpg the vector sum of all these traces,
allowing complete interaction of the different inputs

s = % fk
k=1
Since a component of the ve:tor, s, 1s the sum of corresponding components

of the individual items,

b

Sizzfi

k
each neuron or synapse (where this memory i1s presumably held) participates
in the storage of all of the individual memory items. By this summation,
we have therefore lost information. But much information can be shown to
remain.

Suppose an input, fi, which might have been one of the traces stored
in the memory appears. iHow can it be recognized? We could write the

memory, if fg was ccatained in it, in the form

be
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s = f° + (noise)

where all the other stored items are called noise. When written this way,
we see a problem in signal detection theory: detect the presence or absence
of fQ in the midst of noise. There are a nurber of ways to answer this
question that have been developed by communications engineers and statisti-
cians.

One simple technique uses the so-called ''matched filter' which gives
a single number which is large if the input was present in the memory and
small or zero if it is not. It is formed as the "dot" or 'inner' product
of the memory and the input. The inner product of two vectors a and b is

defined as
ab = (a, b) = z a, b
i

Where ay and bi are the 1 th components of a and b respectively.

Filter output with f as input is given by
output = s-f
Suppose f2 is part of s, i.e., it was stored, then
output = £rfX + § f5.f

Suppose that the vectors we stored in s are 'distinct' from each other. In
particular, let us assume that all the fk stored In 8 are orthogonal to one
another, that is, the inner product fk-fl = 0 if k # ¢. (Orthogonal vec-
tors are at right angles to each other in a high dimensional space.) Then
we see that all the ilnner products in the second term above are zero and

the output is equal to fg'fg which is also a positive number. Of course, the
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real world could hardly be expected to give rise to such a simple picture.
However, if we assume, instead of orthogonality, statistical independence,
i.e., the components for the different traces are chosen as different sam-
ples from the same probability distribution, the memory will still work,
though with a certain amount of noise. This 1is true because two indepen-
dent random vectors are orthogonal to each other on the average.

It is possible to calculate a signal to noise ratio for statistically indepen-
dent traces and show that the signal to noise ratio is (1) directly proportional to
the number of elements in the vectors and (2) inversely proportional to the
number of stored traces. For memories formed from higl dimensionality
random vectors lying on the unit hypersphere, computer simulations show
that the recognition system rarely makes a mistake when the number of
stored traces 1s less than a few percent of the dimensionality of the vec-
tors. Even when the number of traces approaches half of the
dimensionality of the vectors, the system can on the average distin;tuish
stored from non-stored vectors although it makes many errors.

In addition to its ability to distinguish between stored and non-
stored vectors such a system is highly parallel in that all interactions
between the input and stored elements (the inner product) can be arranged
to take place simultaneously, with one overall summation giving the output.
It works better, i.e., the signal to noise ratio gets larger, as the dimen-
sionality of the vectors, the number of storage elements, grows larger.
Since the brain may contain exceedingly large numbers of storage elements
this is a desirable trait. It is also not typical, since most complex in-
formation storage and retreival systems--large libraries and modern bureau-

cracies are good examples-~break down if they become too large. Such a
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system is relatively damage resistant ;ince loss of a few elements make
little difference. In addition, if correlated vectors are stored, the
common part of the inputs will tend to be abstracted out and the system
will respond to the ''average'' or "prototype’ even though it may never have
seen it. This leads to testable predictions. (For a discussion of some
psychological aspects of these models see Anderson, 1973, 1977 and Anderson,

et al. 1977.)

ASSOCIATIVE MEMORY

Association has been known to be a prominent feature of human memory

for over two thousand years. Aristotle observed that "Acts of recollection
happen because one change is of a nature to occur after another ... When-
ever we recollect, then, we undergo one of the earlier changes until we
undergo the one after which the chanpe in question habitually occurs."
(de ilemoria, 451b 10-16, translated by Sorabji, 1972.) Association is not
a logical process. Associations are formed because of contiguity, happen-
stance, similarity, or a number of otlier capricious events external to the
observer.

William James presented a modern and mechanistic view of association,
hypothesizing that 'When two elementary brain processes have been active
together or in immediate succession, one of them, in re-occuring, tends to
propogate its excitement into the other." (p. 265) and, emphasizing the
a-logical nature of association: "It will be observed that the object cal-

led up may bear any logical relation whatever to the one which suggested

it."” (p. 284)
The first modern formal brain models that attempted in an essential

way to explain this aspect of memory seem to have been inspired by hologramns,
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which can be used to associate two images under the appropriate conditions.
(See Pribram, Nuwer and Baron, 1974; and Cavanagh, 1972 for
the references to this large literature.) llolograms, being distributed,

also show the very desirable pronerties of noise and damage resistance.
Although the existence of pure Fourier transform holography in the head scems
unlikely, current models that secm promising can be described as generalized
holograms, which show the noise and damage resistance of optical holograms.

In what follows we present such a model,

Space of Events and Representations

The duration and extent of an "event' should be defined self-consist-
ently by the interaction between the environment and the system itself.
We proceed at first, though, as if an event is a well-defined objective
happening and envision a space of events E, labeled el, e2, e ex. Ima-
gine that these are mapped by th: sensory and early processing devices of
the system through the mapping, ’ (processing) into signal distributions
in the neuron space, fl, f2, .o fK. The mappinp P is denoted by the
double arrow in Figure 3. For the moment, we maintain the fiction that
this mapping is not modified by experience. What actually seems to be the
case is that such early processing systems are at least partially comstructed
in the youth of the animal and become "hardened' at some relatively early
stage in its development.

Although we do not discuss :the mapping P in any detail, 1t can be
very complex, and has been optimized for its appropriate functioning in the
animal's life in the process of evolution. It must be rich and detailed

enough gso that enough informatior is preserved to allow the organism to

function. We assume that the mapping P, from E to F, has the fundamental
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property of preserving, in a sense not yet completely defined, the close-

ness or separateness of events.

Figure 3 about here

Two events e’ and e" map into £V and £ whose separation is related
to the separation of the origina events. In a vector representation, we
imagine that two events as simil ir as a white cat and a grey cat map into
vectors which are close to paral. el while two events as different as the
sound of a bell and the sight of food map into vectors which are close to
orthogonal to each other.

Given the signal distribution in F which is the result of an event in
E, we imagine that the signal distribution f 1s mapped onto another set of
neurons, or onto the same set, bv a mapping, A, denoted by the single arrow
in Figure 3. This latter type of mapping is modifiable, and we propose
that it is in such mappings that animal memory is contained.

In what follows, we construct an idealized nodel of a network which
incorporates a modifiable mapping and explore some of its properties.

Consider N neurons, 1, 2, ... i each of which has some spontaneous

firing rate r We can then define an N-tuple, wlhose components are the

io”®
difference between the actual firing rate rj of the j th neuron and the

spontaneous firing rate, r that is

Jo’

By constructing two such banks of neurons connected to one another, or even
by us2 of a single bank which feeds back on itself, we arrive at a simplified

model, as illustrated in Figure 4,

¥igure 4 about here
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The actual connections between one neuron and the next are complex and
may be redundant. We idealize the network by assuming a single ideal synap-
tic junction which reflects the effect of all the synaptic contacts between

neuron j in the F bank and neuron 1 in the G bank. (See Figure 5.)

Fipure 5 about here

Each of the N incoming neurons in F, 1s connected to each of the N outgoing
neurons, in G, by a single ideal junction. We focus our attention on the

region above threshold and below saturation and assume that: the firing

rate of neuron i in G1<51' is mapped from the firing rates of all of the

neurons, fj’ in F by:

B, = L A Lf
17,5 T

Although most of the results we obtain do not require so strong an assump-
tion, the simplicity of this linear relation makes it useful. In making
this approximation for the range above threshold and below saturation we
are focussing our attention on firing rates, on time averages of instantan-
eous signals in a neuron, or possibly a small population of neurons. We
are also using the known integrative properties of dendrite branaches.

At this point, the basic theoretical entity in neural models has evolved
the binary, highly specialized McCulloch-Pitts neuron to something very like
an analog integrator. Thus the mathematics becomes more like a branch of
linear algebra than automata theory.

There is surprisingly strong physiolo iical evidence for linearity to
be a good approximation within some range >f firing rates. Sensory receptors

often show impressively linear translations of generator potentials into

ron
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firing frequency. (Fuortes, 1971.) Mountcastle has showed linearity of
transmission of some aspects of the sensory stimulus {rom receptors to
cortex, once past an initial non-linear transduction. (Mountcastle,
1967.) In the best understood unervous network, the Limulus eye, neurons
act as very good linear integrators and this small nervous system can be
modeled to high accuracy as a linear system. (See Knight, Toyoda and

Dodge, 1970; Ratliff, Knight, Dodge and Hartline 1974.)

The Associative Mapping, Memory and Mental Processes

Animal memory is likely to be distributed and addressed by association. 1: ad-
dition, there need be no clear separation between memory and "logic." We proy ise
that it is in modifiable mappings of tlhie type A that the memory is store:.
The mapping A has the properties of a memory that is non-local, content
addressable, and in which "logic" is a result of association and an outcome
of the nature of memory itself.

In agreement with such exper mental evidence as Kandel's findings for
Aplysia and in agreement wi'h the opinion of most neuroscientists, we assume
that the physical locus of memory is at the synapses coupling cells and that
precisely specified changes in tliese couplins elements store permanent
memory. [They may also account for less peri anent memory.

How might a mapping be put into the netvork? A synaptic modification
scheme apparently first suggested by D. 0. lebb seems tﬁe most promising.

Hebb's suggestion was stated in a well known passage from the book "Organi-

zation of Behavior' as:

When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some
growth process or metabolic change takes place in one or both
cells such that A's efficiency, as one of the cells firing B,
is increased. (Hebb, p. 62, 1949.)



- 19 -

A particularl- attractive candidate for learning in cerebral cortex
are changes in the specialized processes--dendritic 3pines--which emerge
in great numbers from the dendrites of pyramidal cells. At the end of
these fine processes, are located synapses. Virtually all synapses on
dendrites in pyramids are on spines. Since the dendrite may be quite
thick up to the point where the thin spine prccess emerges, there is a
low resistance pathway from the spike initiating region of the cell to the
spine. Only microns away, on the other end of the spine is the pre-synap-
tic contact, thus pre- and post-synaptic cell are in close apposition and
small physical changes in spine geometry could produce large changes in
synaptic efficacy. Since chang:s in spine morphology have been demonstra-
ted in response to environmental modification in several contexts, this is a specu-
lative but interesting candidatce for the site (f at least some kinds of learning.

(See discussion and references in pgs. 80-86 of Peters, Palay and Webster, 1976,

where Figure 6 was taken.

Figure 6 about here

The synaptic modification assumption above gives a mapping A after the
system has had various sets of activity patterns in the F bank, £¥ and in

the G bank, gu. We can write

uv
Here x denotes the ''outer' product and yields a matrix. Although this is a
transparent mathematical form, its meaning s a mapping among neurons de-
gserves some discussion. The 1j th element of A gives the strength of the
ideal junction between the incoming neuron j in the F bank and the ocutgoing

neuron 1 in the G bank.
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According to this, cells will tend to become correlatec in their dis-

charges; a synapse acting in this way is sometimes called a correlational

synapse. As formulated by Hebb, the model was not immediately suitable for

much mathematical development. lowever, in the past few years, a variety

of brain models have been put forth more or less independently by a number

of investigators, which incorporate centrally a learning postulate somewhat

like llebb's. ILxamples are Willshaw, juneman and Longuet-ilizgins, 1969; .iass and Cooper
1975: Anderson, 1970, 1972:; Amari, 1972: Grssberg, 19’1l; Kohonen, 1972; Cooper,"

1974; Little and Shaw, 1975; Wilson, ..975; among others. Kohonen (1977)

has reviewed much of this work in his recent bocx "Associative Memory:

A Svstem Theoretic Approach."”

Suppose activity pattern £¥ is the F bank :nd activity pattern gv is

in the G bank. We add to the el(ments Aij increments of the following type:

8Ayy ™ Bty

This is proportional to the product of the differences between the
actual and the spontaneous firing rates in the pre- and post-synaptic
neurons j and i,

For such modifications to occur, there must be a means of communication
between the region where the action potentials are initiated and the synapse.
Possibilities for this are many: One might be electrotonic conduction from
the spike initiating region. There are alsu a multitude of substrates for
the change: changes in membrane resistivity, change in siz: of the synapse,
changes in amount of transmitter, growth of new dendrites >r synapses, in-
crease in sensitivity of the junction, and many others. The problem is not

too few candidates for modifiability, but too many.
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Thus, 1if only the jth component of the incoming activity pattern, fj’ is

non-zero
8y = Aijfj .
Since
TRV
A, = z c g.f
13 oy PV 173

the 1j th junction strength is composed of a sum of the entire experience
of the system as reflected in firing rates of the neurons connected to his
junction. Each experience or association (uv), however, is stored over
the entire array of N x N junctions. This is the essential meaning of a
distributed memory: Each event is stored over a large portion of the sys-

tem, while at any local point, many events are superimposed.

Recognition and Recollection

The fundamental problem posed by a distributed memory is the address
and accuracy of recall of the stored events. Consider first the "diagonal"

portion of A,

(A)diagonal B j{a" g Covb X £

An arbitrary event, e, mapped into the signal, f, will penerate the response
in G

g = Af

If we equate recognition with the strength of this response, say the inner

product

(g, 8) ,

then the mapping A will distinguish between those events it contains, the

fv, v=1,2, ... K and other events separated from these. (This is a
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slightly different, but related, definition of recognition from that pro-

posed for the summed vector model of a distributed system discussed pre-

viously.)

The word ''separated' in the above context requires definition.

Suppose

the vector £¥ are thought to be independent of each other, and to satisfy

the requirements that, on the average

i AY

121 £,=0

N

I ¢D?-1.

Any two such vectors have components which

another so that a new vector, f, presented
. v

in the G bank since on the average (f , °)

R A
vector seem previously, f', however, gives

A

f° = gx + noise

€A

It can then be shown that 1f the number of
pared to the dimensionality, i, the signal

as discussed earlier.

are random with respect to one

the I bank
to / above gives a nolse like resnonse
is small. The presentation of a

the response in the G bank

imprinted events, K, is small com-

to nolse ratios are reasonable,

If we define separated events as those which map into orthogonal vec-

tors, then clearly a recognition matrix composed of K orthogonal vectors

will distinguish between those vectors contained and all vectors separated

from (perpendicular to ) these.

Further, the response of the system to a vector
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previously recorded is unique and completely accurate

In this special situation, the distributed memory is as precise as a local-
ized memory.

In addition, this type of memory has the interesting property of recal-
ling an entire associated vector gx even if only part of fx is presented.

Let

If only part of fk. say f; 1s presented, we obtain

A
l’

A
f7 = cAk(f

A A .
1 fl) g + noise

The result is the entire response to the full fA with a reduced coefficient

plus noise.

Association
If we now take the point of view that presentation of the events e’

which generates the vector £ 1is recollected if

fv = ¢ + noise
Y

Then the off-diagonal terms

may be interpreted as contalning associations between events initially

separated from one another.

e £V Y
o P <
~N
/\<
< ~
glJ< ~N fu &—\ - — elJ
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where (fv, fu) = Q.
For such terms the presentation of event e’ will generate not only gv
(which is equivalent to the recollection of e”) but also, and perhaps

more weakly, gu which should result with the presentation of e, Thus,

for example if gu will initiate some response, originally a response to eu,
the presentation of e’ when clJV # 0 will also initiate this response.
We can thus divide the association matrix A into two parts:

A=] cu\)g]-1 x £ =K+&4

uv

where

R - 0 ptaponas = [ e = ¥ [recomiston o
and

(//"K = (A)off_diagonal = ] ngu x £ [association]

p#v

The cuv are then the direct recollection and association coefficients.

Biological "Logic"

In actual experience, the events to which the system is exposed are

not in general highly separated nor are they independent in a statistical
sense. There is no reason, therefore, to except that all vectors, fv,
printed into A would be orthogonal or even very far from one another. Rather
it seems likely that often large numbers of these vectors would lie close

to one another. Under these circumstances, a distributed memory might be
"confused' 1in the sense that it will respond to new events as if they were
old, if the new event 1is close to an old one. It will "recogn ze' and

"associate' events never, in fact, seen or assoclated before.
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The memory will tend to cateporize stiauli on the basis of the pasc
history of the system. For example, suppos2 a number of vectors in the

mermory are of the form
0
£V = £ +n’

where n" varies randomly , EO will eventually be recognized more strongly
than any particular £V actually presented.

This is a testable prediction; something very much like this seems to oc-
cur in a few contexts where it can be checked. (See Anderson, 1977,
Section IV for a discussion of the psychological experiments bearing on
this point.)

We have here an explicit realization of what might loosely be called
biological "logic' which, of course, 1s not logic at all. Rather what oc-
curs might be described as the result of a built in tendency to ''leap to
conclusions."'

This property has certain similarities to the psychological proper-
ties called ''generalization' or 'abstraction.' 1In these models, generali-
zation grows from the loss of detail of individual instances. Thus
generality is gained at the price of precision, a kind of trade-off thut
seems characteristic of distributed systems.

The system takes the step, to give one example, from catl, catz, cat
... to the general: cat, How fast this step is taken depends on the
system's parameters. By altering these parameters it is passible to con-
struct mappings which vary from those which retain the par.iculars to
which they are exposed, to those which lose the particulars and retain only

common elements—-the central vector of a class.
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In addition to errors of recopnition, the associative memory also
makes errors of association. If, for example, all (or many) of the vec-
tors of a class {f")} associates some particular gB so the mappings A

contains terms of the form

g B o
2 CBa g x £
a=1
a K+1 .
with c% # 0 over much of ¢ = 1, 2, ... K, then the new event e which
maps into fK+l as the previous exampl: will not only be recognized (that

is the inner product ( Agk+l, ‘AHK+1) will be large), but will also

associate

A§(+l = ch + ...

as strongly as any of the vectors in {£%}.

If errors of recognition lead to the process described in language as
going from particulars to the general, errors of association might be
described as going from particulars to a universal: cat1 meows, cat2
meows, ... -—-all cats meow.

There is, of course, no "justification'" for this process. Whatever
efficacy it has will depend on the structure of the world in which the
animal system finds itself. If the world is properly ordered, an animal
which "jumps to conclusions" ..ay be better able to react and to
adapt to the hazards of its environment. The animal philosopher sophisti-
cated enough to argue ''the tiger ate my friend but that does not allow me
to conclude that he might want to eat me" could be a recent development
whose survival depends on other less sophisticated animals who jump to

conclusions.
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By a sequence of mappings of the form above, or by feeding the out-
put of A back onto itself, one obtains a fabric of events and connections
which is rich as well as suggestive. One easily sees the possibility of
a flow of electrical activity influenced borh by internal mappings of the
form A and the external input. This flow i; poverned not only by the
direct associlations cuv but also by indirec: associations due to the over-
lapping of mapped events. One can easily imagine situations arising in
which direct access to an event, or class of events, has been lost while
the existence of this event or class of events in A influences the flow

of electrical activity.

Self-Organization of the Associative Memory

To make the modification that we have assumed,

by any of the mechanisms that might exist, the system must have the activity
pattern £ in its F bank and gu in its G bank. It is easy to o>btain £
since this is mapped in from the event e’ by P. DBut to get gu in the G
bank may be more difficult in some circumstances since this is what the sys-
tem is trying to learn.

In what we denote as ''active learning,' which has been explored exten-
sively in the past, the system is presented with sone fA, searches for a
response and is given some indication of whon it is coming closer. When

by some procedure or other it finds the ripl t response, say g, it "prints

into A the information,
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This information is available at the synaptic junctions at the time of the
i : 0 : . A . W
print” order since at that time the system is mapping f , responding g,
and thus had just the appropriate activity in the T and G sanks. Active
learning seems most suitable for a case where a system response to an input
is matched against an expected or desired response and judsed correct or

incorrect. Clearly, much important learning is of this type.

liowever, there is a type of learning which may not require a search
procedure of this kind. It is a type of learning in which an animal is
placed in an environment and seems to learn to recosnize and to recollect
in a passive manner.

One form of a passive learning algorithm (Cooper, 1974) utilizes
a distinction between forming an internal representation of events in the
external world as opposed to producing a response to these events which is
matched against what is expected or desired in the external world.

The simple but important idea is that the internal electrical activity
which in one mind signals the presence of an external event 1s not neces-
sarily, or even likely to be, the same electrical activity which signals
the presence of that same event for another mind. There is nothing that
requires that the same external event be mapped into the same neural patterns
by different animals. What is required for eventual agreement between minds
in thelr description of the external world is not that the electrical
signals mapped be identical but rather than the relation of the signals to

each other and to events in the external world be the same.

Passive Learning

Call A(t) be the A matrix after the presentation of t events. We write

ACt) = YA(t - 1) + ng(t) x £(v)
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In the equation y is dimensionless and is a measure of the uniform decay

of information at every site, a type of forgetting. One would expect that

vy would take values between zero and one. It seems from simulations and analy-
sis that values of y close to one are of most interest (i.e., forgetting

is small). For convenience we normalize all input vectors so that

If we now say that g(t) 1is
g(t) = yA(r = 1) £(r) + gy (t) + ry(t) .

We see that the total post-synaptic potential events are composed of three
terms: a passive response, yA(t - 1) f(t), an active but random term,

gR(t), and an active response, gA(t). For purely passive learning, we

consider only the first term so that
SA = ng(t) x £(t) = ynA(t - 1) f(t) x f(t)

llere the post-synaptic potentials arc just rlhiose produced by the decayed

existing mapping, vyA(t - 1) when the vector f(t) in F is mapped into G
g(t) = yA(t - 1) f(t)

The passive learning algorithm is then
A(t) = yA(t - 1) [1+ nf(t) x £(t)]

where n is presumably much smaller than one. Before any external events
have been presented, A has the form A(0) which could be random or could
contain information which has been programmed genetically. It also will

contain the connectivity of the network.
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y K
With this algorithm, after K events, el, ez, «++ & which map into

fl, f2, e fK, A has the form

\Y

K K v
AK) = vy A(O0) Ho (L+nf x £7)

v=1
where HO is an ordered product in which the factors with lower indices stand
to the left.

It i3 striking that the passive learning algorithm generates its own
response A(O)fv to the incoming vector fv, a response that depends on the
original configuration of the notwork through A(0) and on the vector £V
mapped from the event e’. For example, 1if £V is the only vector presented,

A eventually takes the form

AN gv x £

where

g = AEY .

Special Cases of A

To illustrate some of the properties of passive learning, consider four

special cases of interest:; in all of these, n is assumed to be constant and small.

(1) 1f the ¥ vectors are orthogonal, A becomes

£ x £Y)

1

AK) = YR A) (140
v

I o~

Letting A(Q) £Y = gv, the second term takes the form of the diagonal part

of A,
K
- - \% Y
(A)diagonal"m« n Z g x £,

and will serve for recognition of the vectors fl cee fK. It should bLe ob-

. v
served that the associated vector ¢ are not given in advance, they are
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generated by the network. If n is small, however, this seems inadequate
for recognition, since the recognition term will be weak. One would ex-
pect recognition to build up only after repeated exposure to the same
event.

(2) The passive learning algorithm does build up recognition coef-
ficients for repeated inputs of the same events. If fo is presented %

times, A becomes

ALY = yRa) @+ *0 x €9 .

If & is large enough so that ezn > 1, the recosnition term will eventually
dominate.
(3) The presentation of o:thogonal vectors 21, 12, “os lm times results

in a simple generalization of the second result. When y = 1, for sim-
plicity,

£ n

\Y \Y \”

m
oo+ 2) =A0) L+ ] e’ £ x£)

AR, + &
1 v=1

2

which is just a separated recognition and recall matrix
T v v
A= Z C,uB X f

if

ML
e = ¢ >> 1 .
v

(4) Some of the effects of non-orthogonality can be ;een by calculating
the result of an input consisting of £ noisy vectors distiributed around a

central fo
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Here n” is a stochastic vector whose magnitude 1s small compared to that
of fo. e obtain
L n2 in .0 0
A(L) = v A(0) exp(in H—O (L +e f x £)
where n is the average magnitude of nv. We see that the senerated A(L)
with the additional factor due to the noise 1s of the form for recognition
of fo. Thus the repeated application of a noisy vector of-the form above

results Iin an A which recognizes the central vector fo.

Association Terms

Off-diagonal or associative terms can be generated as follows. Assume
that A has attained the form
K

A=) A £ x £ =
v=1 \Y

g x £ .
1

I o~
<
<

a , a
Now present the events e and eB so they are associated and the vectors f

3

and f" map together. The precise conditions which result in such a simul-

taneous mapping of £% and fB

will depend on the construction of the system.
The simplest situation to imagine is that in which (£* + fB)//E is mapped
if e and eB are presented to the system close enough to each other in
time. We may assume that e” and eB are separated so that (fa, fB) = 0,

In the F bank of neurons we then have (f% + fB)//E where the vector is
normalized for convenience.

After one such presentation of e® and eB, A becomes, with vy = 1,

K
AQL) = ] 2\)va+g‘(g8xfa+gaxf8).
v=1

The second term gives the association between a and 3 with the coefficient



- 32 -

g = Sgo " n/2

which presumably, except in specilal circumstances, would be small. If £

and f3 do not occur again in association the coefficients CaB and cBa re-

main small compared to Ca and ¢ llowever if (fa + fB)/Z is a frequent

p8*
occurance, appearing, for example, & times, the coefficient of the cross

term becomes

as large as the recognition coefficient.

Structure of the Mapped Space

In order that the mapped spacts be useful to the animal in forming an
internal representation of the external world, as well as for eventual con-
cordance between anilmals in their uescription of the external world, the
relations in the mapped spaces must in some sense be in correspondence to
thuse in the external world. Ue show here how this comes about in one
simple case. Assume that in the external world there are K separated
events el, e2, ve ek which map into fl, f2, con fk which are orthogonal to

one another. Under these circumstances the eventual form of A upon re-

peated presentation of the e's will be

There is no need that the gv and f° for one animal which are mapped from
v Y] 'V v

e be the same as the g and f'  mapped from e by another animal. What
is required is that the "structure” of the two mappings be "similar." To

make this last sentence precise in a manner stronger than is actually re-
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quired, we ask that for every e there exists an £ and g( such that the
inner products

\Y

@, g = (£, )

This requirement will be met if A(0 is unitary, that is

(0) A, (0) = s,

g

A
421 ij jk
which is a requirement on the original connectivity of the network.

This can easily be arranged. TFor example if we choo:e
A(0) = 1

the above requirement will be satisfied. Even a random A(0) with evenly
distributed positive and negative entries will, on the average satisfy this
requirement and therefore result in a mapped space with the same communi-
ties and classes as the original event space.

If we combine this result with the prior results on the build-up of
association coefficients, we see that (at least for separated inputs)

(1) The classes or communities of the mapped space, G, are the same
as those of the external or input spaces, E and TF.

(2) Classes or events which are associated in the external space, those
which occur in association during a learning period, become associated in
the mapped spaces so that, after the learninsys period the occurrence of one
member of the associated classes or events in the external space, E, aad there-
fore in the input space, F, will map both members of the associated classes

or events in G even though they are ver. different types of events.
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CONCLUSION

Although we have emphasizel how associative memories can organize them-
selves by interaction with the environment, nothing in this approach limits
the possibility of genetically determined connectivity, pre-wired feature
detectors or other innate organization. Obviously not all synaptic junc-
tions need be or are likely to be modifiable. In any actual system pre-
wired and non-modifiable junctions will function topether with those that
are nodifiable. [One way pre-wiring can be put into the associative matrix,
A is as its initial value, A(0). Non-modifiable synapses can be treated
along with those that are modifiable, for example by dividing A into two parts
one modifiable, the other not.]

A most exciting result is the demonstration that a system can passively
construct a memory by interaction with its environment in such a way as to
learn the associations present in its environment. This is accomplished
without explicit prior instruction about the environment the system wil’
encounter. This result 1is especially important since it seems clear that
any theory of the central nervous system must account for that system's cap-
acity to function in widely different situations that are not likely to have
been pre-programmed in any but the most general fashion.

As a next step, it is important to confront the various assumptions and
theoretical constructions with experiment. This is difficult since we are
looking for subtle changes in the behavior of living cells which are not
easy to observe. Yet some progress has been made. In Aplysia, for example,
synaptic modification has been directly observed. And it is possible that
visual cortex, where nuch experimental and theoretical work has been done,

might prove to be a region in which theoreticnl ideas can be confronted



by experiment.
Synaptic modification dependent on inputs alone, of the type direcrly
observed in Aplysia, is already sufficient to construct the simplest ne:rwory

siven as our first example

_ k
s = E fi

a mermory that distinsuishes what lis been seen from what las not, but does
not easily separate one input from ¢nother. To distinguisl between inputs

as well requires synaptic modification dependent on input and output (or more
gencrally, dependent on Informatior that exists at different places on the
neuron menbrane). In order that such modification take place, the info ‘ma-
tion nust be communicated from, for example, the axon hillock to the synapti:
junction to be modified. This inplies the possibility of internal communica-
tion of information within the necuron. If a mechanism fo1 such communication
exists one might puess that specific forms evolved in varisjus ways and that
various types of two (or higher) point modification exist.

It is tempting to conjecture that a liberating evolutionary step was
just the development of this means of internal communication which, coupled
with the ability of synapses to modify, created the possibility for a new
organizational principle.

Une must also show that it is possible, at least in jprinciple, to con-
struct systems, using networks such as those described above, that
can accomplish at least some of the tasks done so easily ly the educated
animnal. llere psychological models may be of great value. However, mnuch
remains to be done. Lven such a sinple seeming question as how a common pat-

tern is recognized remains unanswered.
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It seems likely, therefore, that some fundamental new ideas remain to
be introduced before we can say that we have arrived at an understandin:; of

the relation between brain function and brain as a biological system--ia

the words of William James ''...the scientific achievenent before which all

past achievements would pale.”
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FIGURE CAPTIONS

'"Map of identified cells in the abdominzl ganglion of
Aplysia californica indicating the most common positions
of the identified cells. The identifiec cells are
labeled L or R (left or right hemiganglion) and assigned
a number. The hemiganglia are arbitrar:ly subdivided
into quarter-ganglia. Cells that share similar proper-
ties generally have similar labels, e.g., L9g; and L9g3,
and L14A, L14B, and L14C. Cells that are members of
clusters are identified by the cluster name and a sub-
script identifying the behavioral function of the cell,
e.g., LDy;; and LDyj7, two heart inhibitors belonging to
the LD cluster.'" [From E. Kandel, pg. 226 (1976).]

Simple distributed computational model of superior colli-
culus. A calculation of the 'weighted center of gravity"
of the distribution of afferent impulses on the surface
of the colliculus (a distorted two-dimensional map of
visual space) directs eyes to that point. [From Pitts
and McCulloch, pg. 127 (1947) Figure 6.]

The N neurons in the F bank are connected via synaptic
junctions to the N neurons of the G bank. [From Cooper,
pg. 254 (1974).]

The ideal associator unit., Each of the N incoming neu-
rons in F is connected to each of the N outgoing neurons
in G by a single ideal junction. (Only the connections
to 1 are drawn.) We assume that the firing rate of neu-
ron i in G, g4y, is mapped from the firing rates of all
of the neurons in F by: gy = Xinjfj' {From Cooper,
pg. 2564 (1974).]

The ideal junction. [From Cooper, pg. 255 (1974).]

An electron micrograph of a dendritic spine (magnifica-
tion about 40,000) in a freeze-fracture preparation of
the cerebellum of an adult rat. Although this is not a
cell from the cerebral cortex, spine anatomy is similar
to cortical spines in most respects. [From Peters, Palay
and Webster, pg. 84, (1976).]
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