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The large-scale spatial syn-
chrony in the snowshoe
hare (Lepus americanus)
population density cycle,

and its associated lynx (Lynx cana-
densis) cycle, stimulated P.A.P.
Moran1 to provide one of the first
contributions to the discipline of
spatial population dynamics. He
developed statistical approaches
for analysing spatial aspects of
time series and formally derived 
a mechanism – later termed the
Moran effect2,3 – to explain the
large-scale synchrony. Although
the topic of spatial population syn-
chrony, which we define as spatial
covariation in population density
fluctuations, was occasionally re-
visited in the decades following
Moran’s pioneering work4–6, it has
recently become a major focus 
for investigation. New theoretical
studies have suggested mecha-
nisms for large-scale synchrony
other than those suggested by
Moran originally. A surge of pat-
tern-oriented empirical studies
have demonstrated not only that
spatial population synchrony is a
phenomenon that occurs widely in
animals as well as plants, but also
that the patterns of synchrony
vary considerably7. These studies,
together with detailed theoretical studies, have shed new
light onto key research issues in population ecology. For ex-
ample, identifying the spatial extent of population synchrony
points to which factors regulate populations and their ‘char-
acteristic’ scale8,9. The spatial dimension has also provided
alternative models for species coexistence and community
structuring10,11. We are just beginning to understand how
spatial and temporal population dynamics are integrated.

From an empirical point of view, it is of interest to ob-
tain accurate estimates of the strength of synchrony as a
function of isolation and spatial distance between popu-
lations. Central to the statistical analysis and estimation of
synchrony from spatiotemporal data is the concept of spa-
tial covariance (Box 1). The role of theory in this context is
to predict what covariance patterns can arise from dif-
ferent ecological mechanisms and, eventually, how the
resultant covariance patterns can feed back into (tempo-
ral) population dynamics12,13. The final, and perhaps most
tricky, step in the interplay of theoretical and empirical
approaches to spatial population dynamics is the empiri-
cal testing of the possible causal mechanisms.

The many recent achievements
in theoretical spatial population
dynamics have recently been sub-
ject to two thorough reviews and
compilations10,11, while the em-
pirical evidence for population
synchrony has been reviewed by
Koenig7. Here, we focus on the
interplay between theoretical and
empirical research protocols. We
emphasize modeling results and
statistical methodology that per-
tain to spatial covariance, because
this is an important area where
theoretical and empirical studies
can meet. Research on population
synchrony has now reached a
stage where ecological theory and
statistical methodology can guide
the design of new empirical stud-
ies. Such studies will help to close
the remaining gap between theory
and data, and thus between ob-
served patterns and underlying
causal processes.

Theory: predicting spatial
covariance from ecological
mechanisms

Theoretical models have been
used to deduce patterns of popu-
lation synchrony based on three
classes of processes: (1) Diffusion
or dispersal can induce varying

levels of spatial synchrony by coupling locally regulated
populations; the resultant synchrony can be fairly local in
space or widespread13,14. (2) Community processes and
trophic interactions can give rise to local or widespread
synchrony in the prey or host populations because of the
interactions between, and differential mobility of, the tro-
phic interactants (e.g. predator–prey or parasite–host)9,15–17;
models of such processes are often termed reaction–diffu-
sion or activator–inhibitor models owing to the ‘reaction’
between the interactants and the activating or inhibiting
effects they have on the local growth rates of each other.
(3) The Moran effect describes how density-independent
factors that are correlated across wide regions (e.g. climate
or mast seed production) can synchronize the dynamics of
populations; the central idea is that locally regulated popu-
lations will be synchronized if environmental shocks are
globalized1–3,7.

The most complete body of theory predicting popu-
lation synchrony from the three different synchronizing
mechanisms is based on coupled map–lattice models11,18 –
that is, models of local populations that are coupled in a
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spatially explicit manner. In theory, each of the three mecha-
nisms have the potential to induce large-scale (regional)
population synchrony based on reasonable assumptions
regarding dispersal rates and distances, and the frequen-
cies and strength of environmental shocks. The crucial
result is, therefore, that the different mechanisms leave
characteristic signatures of spatial covariance that can be
discerned in spatiotemporal data; that is, the spatial co-

variance is partly mecha-
nism-specific10,11. A compli-
cating aspect, however, is
that the pattern of synchro-
nization is also conditional
on the properties of local dy-
namics13,18. Recently, Ranta
et al.13 studied this aspect by
considering synchronization
in lattice models with differ-
ent types of local dynamics
(stable, cyclic or chaotic),
coupled by dispersal and/or
regionally correlated shocks.
We reproduce a simplified
version of their study in Fig. 1.
The study shows that locally
cyclic dynamics reach near
perfect synchrony in the pres-
ence of fairly weak coupling.

This property of certain nonlinear systems is called phase-
locking. By contrast, coupled populations with chaotic
dynamics remain uncorrelated. Locally stable, and thereby
approximately linear, populations follow Moran’s theorem
(which states that the correlation in dynamics should be
equal to the correlation in the density-independent forcing
agent2) (Fig. 1). The spatial dynamics of measles gives an
empirical example of the subtle interaction between dy-

namic nonlinearities (which
give rise to cyclic or chaotic
dynamics) and synchrony: a
change in disease transmis-
sion rates as a result of mass
vaccination destroyed the
high levels of synchrony be-
tween epidemics19. This is
despite dispersal being, if any-
thing, higher in the recent vac-
cination era.

Community processes
lead to a variety of spatial
patterns10,11,17, and thereby 
a variety of covariance pat-
terns (Box 1). Nomadic avian
predators can induce region-
wide synchrony in their
prey15. Both the degree of
perfection of these predators’
large-scale prey-tracking abil-
ity and their functional re-
sponse at the local scale
determine the strength of syn-
chrony16. Furthermore, tight
predator–prey interactions
can result in cyclic dynamics,
and either dispersal or corre-
lated environmental shocks
can subsequently induce re-
gional phase-locking (Fig. 1b,
Box 1). However, specialized
host–enemy or predator–
prey interactions can also
give rise to second-order spa-
tial covariance, which can
take the form of travelling
waves11,17 or Turing struc-
tures11,20 (Box 1).
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Box 1. Spatial covariance in population dynamics and related concepts
Spatial covariance denotes the way the abundance or population growth rates covary in space (i.e. the way these proper-
ties depend statistically on neighboring, or more distant, populations). If the covariance is only a function of the distance
between populations, it will not show any trends or directionality across space. Such covariance is isotropic. 

Anisotropic covariance depends on direction as well as spatial distance. 

First order covariance means that spatial processes such as dispersal operate at a local scale (e.g. only between neigh-
boring populations). More distant covariance arises solely as a result of indirect effects. First order processes, with local
positive correlations, have a covariance that declines monotonically towards zero with distance. 

The scale or extent of synchrony is the distance at which the covariance is indistinguishable from zero (although other
definitions can be used).

Second (higher) order covariance depends on more distant spatial units than the nearest neighborhood. Several ecologi-
cal interactions, such as trophic interactions, can give rise to second order temporal covariance in dynamics – that is the
population growth depends not only on the immediate past density, but also on prior generations. With localized move-
ments such interactions can induce second order spatial covariance. Such covariance gives rise to spatially and temporally
varying population synchrony that can be manifested as waves of abundance travelling through space. 

Travelling waves mean that peak densities are moving across space. The waves can be either unidirectional or of a radial
or spiral type. 

Turing structures are second order covariances that can also give rise to static, patchy patterns.

Fig. 1. Ranta et al.13 show how dispersal and environmental correlation result in different patterns of synchrony depending
on the type of population dynamics in the evolution of 30 populations through time (30 generations) for the three types of
dynamics: (a) stable local dynamics, (b) cyclic local dynamics and (c) chaotic local dynamics. Twenty-five percent of the
local populations are allowed to disperse to neighboring populations in this simulation. The populations are affected fur-
ther by correlated environmental stochasticity (spatial correlation 5 0.3). White circles represent values smaller than the
median, black circles represent values larger than the median. The areas are proportional to the absolute deviations from
the median. (d–f) The corresponding spatial covariance as a function of distance. (d) The covariance of the locally stable
populations is high between neighboring populations as a result of the dispersal, and decays to the level of the regional
synchrony with distance (according to Moran’s theorem). The average synchrony is 0.34. (e) Cyclic populations exhibit non-
linear phase-locking so that the populations are in synchrony throughout the region. The average synchrony is 0.98. (f)
Chaotic populations exhibit little synchrony. The regionally correlated noise does not synchronize the dynamics; the aver-
age synchrony is 0.02 (Ref. 13). 
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Here, we emphasize two broad challenges that have great
potential to narrow the current gap between theoretical and
empirical studies of population synchrony. First, although
different mechanisms sometimes lead to different predic-
tions regarding the strength of synchrony (the most common
predictions from models), any match between such predic-
tions and estimates from spatiotemporal data cannot readily
be used to exclude alternative mechanisms. For example,
Moran effects are expected to cause large-scale synchrony.
However, nonlinear phase-locking, caused by dispersal in cy-
clic populations, might be a viable alternative unless compli-
mentary information (e.g. regarding local dynamics) is avail-
able. By casting the predictions in specific functional forms
of the covariance such ambiguities might potentially be re-
moved. Second, different synchronizing mechanisms are
likely to operate simultaneously in nature. The relative
consequences of Moran effects and dispersal-induced syn-
chrony have been investigated to some extent13. However,
more theoretical work on how the different mechanisms
interact to shape spatial covariance functions is needed.
The extent to which the contributions of the different mecha-
nisms are separable hinges on whether they operate in an
additive fashion. Additivity, or lack thereof, is investigated
most easily with strategic modeling.

Statistics: quantifying spatial covariance
The most common way to quantify the degree of syn-

chrony between spatially segregated populations is to
compute the ‘zero-lag cross-correlation’ between the time
series of log-abundances7 or growth rates21,22 (Box 2). A
common method to quantify region-wide synchrony is the
average pairwise cross-correlation in the growth rates of
populations (Box 2). Calculating region-wide synchrony is
the natural first step in the study of population synchrony.

The next step in the analysis is to elucidate how syn-
chrony drops with distance. Methodologically, there are
two main approaches to this: the parametric and the non-
parametric. When these synchrony-by-distance analyses
suggest complex spatial covariance functions, specifically
tailored analyses might be used to explore more fully the
spatiotemporal dynamics. We will exemplify spatiotempo-
ral dynamics with reference to travelling waves.

Parametric covariance functions
The parametric approach can be applied when a predic-

tion about the functional relationship between synchrony
and distance is formulated as a statistical model. Theoretical
studies indicate that covariance functions take a variety of
forms. As a possible yardstick model, a simple linear first-
order spatial covariance process gives rise to a correlation
that declines exponentially with distance. Myers et al.23 thus
conjectured that the spatial covariance in recruitment in a
large number of fish species should exhibit an exponential
decay.

The most commonly employed parametric approach
has been to investigate the linear relationship between syn-
chrony and distance in terms of the Pearson correlation
coefficient3,24 or the linear regression of synchrony on dis-
tance25. The x-intercept of this regression (the distance
where the regression line is zero) has been used as a meas-
ure of the ‘extent’, or the scale, of synchrony. However,
one of the main lessons from theoretical studies is that a
linear decay in covariance with distance is not a likely out-
come in nature. Therefore, other functional forms should
be considered. Because the data exhibit interdependence,
correct statistical inference for parametric covariance
functions is obtained through randomization7.

The main strength of the parametric approach is that it
can provide a strong link between theoretical and empirical
analyses of population synchrony. When particular covari-
ance functions follow from presumed synchronizing mecha-
nisms, the parametric approach will facilitate rigorous sta-
tistical comparison of competing hypotheses. Furthermore,
estimating parametric covariance functions permits quanti-
tative synthesis and meta-analysis of independent studies.
The main obstacle of the parametric approach is that cur-
rent theory of population synchrony is not developed fully.
Thus, the forms of the covariance functions that can arise
from different synchronizing mechanisms are rarely known
(but see Ref. 12).

Nonparametric covariance functions
In response to the scarcity of theory pertaining to how

the synchrony decays with distance, several researchers
have tried to use nonparametric statistical approaches to
estimate the functions. The Mantel correlogram approxi-
mates the relationship between synchrony and distance with
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Box 2. Quantifying synchrony by means of cross-correlation
The most commonly employed measure of synchrony between two populations, i
and j, is the Pearson moment correlation between the two time series. By using first-
differenced time series of log-abundance [i.e. using the difference between success-
ive observations (log Nt 2 log Nt-1 5 zt, where Nt is the abundance or density at 
time t)], emphasis is put on synchrony in population growth rates. Cross-corre-
lation based on raw abundances can partly reflect long-term temporal trends in abun-
dance; trends that potentially arise for different reasons in different populations.
Some of the (positive or negative) correlation between time series of abundances
might, therefore, be spurious. By contrast, cross-correlation based on growth rates
focus on synchrony in change. Analyses can also be calculated on abundances cor-
rected for local dynamics or trends by analysing the residuals from population models.

If the length of the time series is T11, there will be T growth rates. We denote
the mean growth rate of population i by: 

and the variance by:

The covariance in growths of populations i and j at lag zero is measured as:

The corresponding cross-correlation coefficient is measured by:

Because successive growth rates are strongly serially dependent, significance lev-
els should be obtained by randomization7.

The mean or region-wide synchrony for N populations/time series is given by:

The cross-correlation coefficients are not independent7. A bootstrap confidence
interval for the mean synchrony is generated by sampling with replacement among the
populations, with the subsequent recalculations of the coefficients and averages22.

When two independent synchronizing mechanisms are assumed to operate at
different spatial scales, the signature of one mechanism is sometimes removed to
highlight the effect of the other. For example, Paradis et al.33 removed the common
year-to-year trend, which they assumed to be caused by common climatic influ-
ences, to focus on the effect of species-specific dispersal ranges of British birds.
Bolker and Grenfell19 removed the correlation caused by seasonal cycles in
measles dynamics (through a method called statistical prewhitening) to highlight
the effect of vaccination on spatial synchrony.
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a discontinuous step function (Box 3). Because precision is
lost when using a step function, a more novel approach,
the nonparametric covariance function (NCF; Box 3) might
prove more powerful. The NCF estimates a continuous func-
tion tailored specifically to represent a covariance function.
The Mantel correlogram does not provide a confidence re-
gion for the spatial covariance, and therefore cannot fully
address the presence of statistical difference in synchrony
between different geographic regions or different species.
By contrast, bootstrap confidence envelopes can be erected
for the NCF. An analysis of two sympatric species of Japan-
ese rodents (the grey-sided vole, Clethrionomys rufocanus;
the Japanese wood mouse, Apodemus speciosus) using the
NCF, demonstrated that the pattern of spatial synchrony
differed significantly between the two species22.

The x-intercept of Mantel’s correlogram represents the
distance at which the synchrony is equal to the average
synchrony for the entire sample of populations (Box 3).
The correlogram has been used to distinguish between the
extent of local synchrony (defined by the x-intercept) and
region-wide average synchrony. For example, the extent of
local synchrony among populations of bank voles (Clethrio-
nomys glareolus) in southern Norway was inferred to be
30–40 km (Ref. 21). There are two snags to distinguishing
local from regional synchrony. First, it assumes that the
mechanisms causing local correlation are separable from
those causing regional synchrony. Second, the region-wide
average synchrony might depend on the extent of the study
area. To circumvent this caveat of the Mantel correlogram,
modified correlograms can be constructed that have zero
synchrony as the reference line26 (Box 3).

Travelling waves
Recent empirical studies have suggested second-order

spatial covariance in spatially extensive survey data24,27.
Elston and coworkers27,28 have developed a statistical
method to uncover the signature of travelling waves and esti-
mate the waves’ speed and direction (Box 4). Analyses of the
data from a set of cyclic field vole (Microtus agrestis) popu-
lations in Scotland have revealed a wave in abundance that
moved at an average speed of approximately 20 km per year
in an east-northeasterly direction27 (Box 4). Certain viral dis-
eases, such as rabies, also exhibit pronounced travelling
waves29. Such data sets are prime candidates for future study.

Study design and complementary information
Much of the data analyzed currently, stems from general

surveys that were not designed to answer questions about
population synchrony. More detailed considerations about
spatial aspects of the sampling design, such as the size and
shape of the study area (the sampling frame), and the spatial
resolution and size of local sampling points (the grain), can
improve studies of population synchrony. Sampling on too
coarse a sampling grid could obscure local synchrony. When
sampling small and very local populations, local sampling
variance and demographic stochasticity might blur any ex-
isting covariance pattern further30. The sampling frame has
bearings on several aspects of the estimated spatial covari-
ance functions, because if it is too narrow compared with the
scale of spatial variation, inference, with respect to spatial
scaling, will be biased. For instance, the x-intercept of the
Mantel correlogram, which measures the scale at which the
synchrony is above the region-wide average (Box 3), will be
a negatively biased estimate of the spatial correlation length
if the size of the study area is too small. This effect is called
the ‘volume effect’31. A post hoc way to correct for design-
based biases is to simulate data with known covariance
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Box 3. Estimating spatial covariance functions
The distance, dij, between two populations, i and j, is usually measured by the geo-
graphic distance. However, sometimes the most appropriate distance is along river-
systems or weighted according to how dispersal is impeded by different landscape
features. The Mantel correlogram7 decomposes the region-wide average synchrony
(Box 2) by calculating a step function, obtained through local averaging around k
focal spatial distances {dk; k 5 1, …, K }. These distances are usually selected at
constant increments from the smallest to the largest distance observed. Before the
calculation of averages, the dij’s (as defined in Box 2) are centered to have zero
average by subtracting the overall mean, r. The Mantel correlogram, C(dk), is
defined as:

where Lk and Uk signify the lower and upper tolerance limit around the k focal dis-
tances. The x-intercept of the Mantel correlogram measures the distance at which
the synchrony is equal to the average synchrony, therefore, it is sometimes used as
an estimate of the scale of local synchrony. Koenig’s7 modified correlogram does
not center the rij’s. The modified correlogram thus has zero synchrony as the ref-
erence line26 (Fig. I).

Bjørnstad et al.22 developed the spline correlogram as an adaptation of the non-
parametric covariance function40 (NCF). The spline correlogram provides a direct
estimate of the covariance function itself. The nonparametric covariance function is
calculated as:

where G is a kernel function with kernel bandwidth h (see Ref. 41 for an introduction
to kernel estimation). A confidence envelope can be calculated using the boot-
strap22. Bjørnstad et al.22 use the centered version of the spline correlogram (i.e.
replacing ri j in Eqn 1 with rij2r2).

The figure depicts the spatial covariance in 30 years of census data of the Japan-
ese wood mouse (Apodemus speciosus) from Northern Hokkaido, Japan22. The
covariance is quantified by Mantel (asterisks) and modified (filled circles) correlo-
grams, and by the (noncentered) nonparametric covariance function (unbroken line)
applied to the growth rate of 179 populations spanning an area of 150 3 280 km.
The two latter methods show that the spatial correlation asymptotes to a region-
wide synchrony around 0.2. The Mantel correlogram shows that the regional level of
synchrony is reached at a distance of around 25 km. The 95% bootstrap confidence
envelope of the nonparametric covariance function is shown by the dashed lines.
Figure reproduced, with permission, from Ref. 22.

  

˜

/

/

ρ δ

δ ρ

δ

( ) =
( )

( )
= +=

= +=

∑∑

∑∑

G h

G h

NN

NN

ij
j ii

ij

ij
j ii

11

11

   
C d L Uk k k k( ) = − < ≤( )mean ρ ρ δij ij|

Tr
en

ds
 in

 E
co

lo
gy

 &
 E

vo
lu

tio
n

1.0

0.5

0.0

0 20 40 60

Distance (km)

80 100

C
or

re
la

tio
n/

M
an

te
l c

or
re

la
tio

n

(Online: Fig. I)

(1)

(2)



TREE vol. 14, no. 11 November 1999 431

patterns on the map of the
study area22. In addition, tem-
poral aspects of the frame
and grain should also be con-
sidered, because the pattern
of synchrony might fluctu-
ate on a long-term scale7,32.
As for all ecological studies,
the sampling design should
be planned carefully and be
guided by previous knowl-
edge about the focal system,
including preliminary obser-
vations of population dy-
namics and species-specific
characteristics such as dis-
persal ranges.

Population ecologists are
ultimately interested in the
mechanisms behind any
observed pattern. Unfortu-
nately, there are limitations to
what inferences can be made
about mechanisms of popu-
lation synchrony from sur-
vey data. Post hoc theoreti-
cal modeling24 might serve 
to narrow the set of mecha-
nisms to some trophic mecha-
nism, but there are still
several candidates. Comple-
mentary approaches are
needed to understand popu-
lation synchrony.

Comparative analyses of
patterns of synchrony in 
species with different mobil-
ity have provided the main
source of insight to the role
of dispersal so far. In multi-
species data sets of a diver-
sity of insects25 and birds33,
local synchrony was most ex-
tensive in the most vagile spe-
cies. However, the opposite
was observed for two sympat-
ric rodents22. Observational
studies, eliminating certain
synchronizing agents by de-
sign, are valuable; the Moran
effect was concluded to be the
likely mechanism synchronizing two island populations of
Soay sheep (Ovis aries)34. In the more common situations
where there are no, or incomplete, barriers to dispersal, the
extent of the dispersal should be measured. Stacy et al.35

used genetic markers and the lack of gene flow to dismiss dis-
persal as the synchronizing mechanism in boreal bank voles.
In cases where dispersal is prevalent on a scale that can
cause synchrony, inference is difficult. First, transfer rates
between populations are inherently difficult to estimate36.
Second, these estimated rates are usually subsequently im-
plemented in models in the form of diffusion coefficients.
Because such coefficients are scaled to time, care must be
exerted in choosing appropriate time-scales. Third, simple
models assume constant dispersal rates, whereas in reality
these can vary with density and other ecological circum-
stances. For instance, lynx and coyotes (Canis latrans) adopt

a nomadic lifestyle following crashes in snowshoe hares37.
These changes in predator spatial behavior are likely to influ-
ence synchrony and dynamics in both prey and predator37.

The mechanisms behind large- and local-scale synchrony
are interpreted most easily through studies of local demo-
graphic rates. Estimates of emigration and immigration
rates of populations, as well as measures of mortality caused
by putative synchronizing agents, will highlight their relative
influences. Because of the large spatial scale of population
synchrony in many species, it is often thought that experi-
mental studies would be impossible to conduct. However,
experimentation is a powerful tool for highlighting deter-
minants of local demography. Exclosures and/or enclosures,
large enough to include local populations, can be used strat-
egically as complete or partial barriers against migration
and the influx of trophic interactants. Such exclosure studies

REVIEWS

Box 4. Quantifying travelling waves
Elston and co-workers27,28 developed a modeling approach to estimate the speed, direction and statistical significance of
travelling waves. (a) The wave can take different shapes but is assumed to travel as a parallel, unidirectional wavefront with
a bearing u and a time invariant speed 1/r. At any given time the abundance of populations located perpendicular to the
wave front becomes progressively dissimilar with distance. This induces anisotropy in the spatial covariance. (b) The
anisotropy is seen clearly in the data on cyclic field vole populations in Scotland27. The drop in cross-correlation is conspicu-
ous in the direction perpendicular to the wavefront (728N). (c) The correlation does not decline with distance parallel to the
wave front (along a bearing of 1628N). Reproduced, with permission, from Ref. 27.

In the model used to estimate speed and bearing of the wave (Eqn 1), the dynamics of all populations are assumed to
follow the same pattern of temporal fluctuations, S, but the timing depends on the population’s spatial location (the x- and
y-coordinate) along the direction of the wave. We denote this distance by D(xi, yi, u). The local abundance Ni,t, of population
i at time t is thus modeled according to:

where u is the grand mean abundance and ei,t are the residuals. To allow flexibility in the shape of the population fluctu-
ations (and thereby also the shape of the travelling wave), S() is fitted as a smoothing spline in a generalized additive
model41. The estimation of r and u is calculated using profile likelihood28. (Hilborn and Mangel42 provide an introduction to
profile likelihood methods.) As the error term ei,t is likely to be spatiotemporally correlated under this model, statistical sig-
nificance is assessed through randomization tests28.

The wave speed is believed to change both in cyclic field vole data27, and in cyclic snow shoe hare data37. Recent exten-
sions of the model allow for varying the speed, 1/r, across time or cycle phase28.
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have been used to examine effects on local demography in
small mammals, but have yet to be coupled to large-scale
dynamics. In some cases, the entire focal system is suffi-
ciently small-scaled that manipulations are possible38. Re-
cent studies by Harrison and co-workers20,39 show how dif-
fusive interactions in insect parasitoid–host systems cause
spatiotemporal patterns in abundance and mortality as
predicted by spatial predator–prey theory. These studies
combine experimentation, statistical analysis and theoreti-
cal modeling to understand spatial dynamics.

Conclusion and prospects
We have highlighted various aspects of the interplay be-

tween theory and empirical studies for understanding the
patterns and mechanism of spatial population synchrony
and covariance. The spatial covariance function provides
one natural intersection between models and data, statistical
models for spatial variation in abundance provide another,
but only if tightly motivated by ecological theory. Recent
statistical developments provide the means for more studies
that link theory and data. To identify the underlying mecha-
nisms of population synchrony, specifically tailored study
designs are useful. Preferably, these should include experi-
ments on local populations, because determinants of large-
scale population synchrony ultimately exert their influence
via local demographic rates (mortality, reproduction and re-
cruitment). Different patterns of local fluctuations in abun-
dance change the synchronizing effect of dispersal and re-
gional disturbances. This effect illustrates how local and
large-scaled factors are intimately linked in shaping popu-
lation synchrony.
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