
Genome-scale network reconstructions are built from 
curated and systematized knowledge1,2 that enables them 
to quantitatively describe genotype–phenotype relation-
ships. Genome-scale models (GEMs) are mathematical 
representations of reconstructed networks that facilitate 
computation and prediction of multiscale phenotypes 
through the optimization of an objective function of 
interest3,4.

The development of a GEM requires curated meta-
bolic knowledge bases, such as the Kyoto Encyclopedia of 
Genes and Genomes (KEGG)5, and an annotated genome 
sequence of the organism of interest. By mapping the 
annotated genome sequence (Fig. 1a) to the knowledge 
base, one can reconstruct a metabolic network composed 
of all known metabolic reactions (Fig. 1b). This metabolic 
network can be converted into a mathematical format — 
a stoichiometric matrix (S matrix) — where the columns 
represent reactions, rows represent metabolites and each 
entry is the corresponding coefficient of a particular 
metabolite in a reaction (Fig. 1c). A cellular objective is 
needed to enable computation of a feasible metabolic flux 
that optimizes the model objective. A widely used objec-
tive function is to optimize growth rate, represented by 
a biomass function6, composed of essential metabolites 
needed for growth. The detailed steps to reconstruct a 
GEM have been described in a formal protocol1.

Flux balance analysis (FBA) is the most widely used7 
approach to characterize GEMs. GEMs can simulate 
metabolic flux states of the reconstructed network while 
incorporating multiple constraints to ensure the solution 
identified by FBA is physiologically relevant and com-
pliant with governing constraints, such as the metab-
olic network topology represented by the S matrix, a 
steady-state assumption (that is, the internal metab olites 
must be produced and consumed in a flux-balanced 
manner), and other limits on nutrient uptake rates, 
enzyme capacities and protein/gene expression profiles. 
The S matrix and the objective function define a system 
of linear equations that can be solved given the imposed 
constraints, resulting in a solution space (that is, a space 
where all feasible phenotypic states exist) (Fig. 1d,e). 
FBA can identify a single optimal flux distribution or 
multiple optimal flux distributions that optimize the 
objective function in the solution space (Fig. 1f). FBA 
and many other GEM analysis methods are available 
through COBRApy8 in Python or the COBRA Toolbox 
in MATLAB9.

GEMs have been successfully implemented for a 
wide range of applications10–17, including understanding 
microorganisms16–22, metabolic engineering23–27,23–26,28, 
drug development29, prediction of enzyme functions30, 
and understanding microbial community interactions31–40 
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and human disease41,42. One metabolic engineering appli-
cation focuses on suggesting gene deletion strategies to 
enable overproduction of a metabolite of interest24. The 
algorithm OptKnock uses GEMs to identify gene dele-
tion combinations that ensure the metabolite of interest 
becomes an obligatory metabolic by-product of growth 
(known as growth-coupled production). This framework 
was applied to succinate, lactate and 1,3-propanediol 
production in Escherichia coli24. OptKnock combined 
with the E. coli GEM proposed gene knockout strate-
gies that are in good agreement with published mutant 
strains in the literature, highlighting its potential in strain 
design24. GEMs have also been developed to study can-
cer metabolism. One study29 used the GEM of cancer 
metabolism to predict potential drug targets by simu-
lating gene knockdowns, evaluating the damage on ATP 
production and assigning cytostatic scores for genes. The 
model predicted 52 cytostatic drug targets, of which 40% 
are already targeted by known cancer treatments, leaving 
the rest as potential new drug targets.

Since the development of the first GEM for 
Haemophilus influenzae43, the field has advanced sub-
stantially with a rapid rise in the number of GEMs 
built14,44. The number of tools and methods involved in 
network reconstruction and analysis has also bloomed, 
which accelerated the model-building process45 and ena-
bled numerous uses of GEMs4 (Box 1). As of 2019, GEMs 
had been generated for more than 6,000 sequenced 
genomes either manually or through automatic GEM 
reconstruction tools45, covering bacteria, archaea and 
eukaryotes.

In addition to the well-developed uses of GEMs, 
recent explorations of new applications have emerged. 
In this Review, we describe the ongoing efforts in recon-
struction to increase the coverage of the tree of life by 
GEMs, describe the expansion in the scope and appli-
cations of GEMs as illustrated by the example of E. coli 
and elaborate on three emerging areas where great 
potential exists: multistrain analysis using strain-specific 
GEMs; the incorporation of macromolecular expression 
pathways into existing models of metabolism to form 
metab olic and macromolecular expression (ME) mod-
els; and prediction of complex phenotypes, such as stress 
responses. We foresee the continual development and 
implementation of GEMs for many more organisms  
of interest, and their becoming an essential tool for  
synthetic genome engineering.

Growth of genome-scale reconstructions
Extensive effort has focused on reconstructing metab-
olic networks for a broad range of organisms. GEM 
development was initiated for bacteria and has gradu-
ally extended to archaea46–48 and eukaryotes49, including 
yeast50, plants51–53 and humans54–56.

Exponentially growing numbers of genome sequences 
(Fig. 2a) enable the construction of a knowledge base 
of reactions and metabolites57 and the generation of 
increasing strain-specific network reconstructions. As 
the manual reconstruction of genome-scale networks 
is laborious and time-consuming, many automated 
network reconstruction tools have been developed 
to accelerate the reconstruction process, including 
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Fig. 1 | basic principles of constraint-based modelling of cellular functions. a | Metabolic genes from annotated 
genomes of interest and metabolic knowledge lead to metabolic reactions. b | Integration of all the metabolic reactions 
through shared metabolites results in the construction of a metabolic network for the organism of interest. c | The metabolic 
network can be converted into a stoichiometric matrix (S matrix), where rows represent metabolites, columns represent 
reactions and each entry represents the reaction coefficient of a particular metabolite in a reaction. d | With the S matrix 
and the objective function of the model, one can solve for the flux distributions. The solution space is where all possible 
solutions of flux distribution reside, and each axis represents the metabolic flux of a reaction. e | Applying additional 
constraints will shrink the allowable solution space. Commonly used constraints include the steady-state assumption and 
feasible ranges of metabolic flux. f | One or multiple optimal solutions can be found in the allowable solution space that 
optimizes the objective function of the model (as represented by the red dot).
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ModelSeed58, CarveMe59, RAVEN60,61 and kbase62. 
According to a summary from 2019, around 5,897 bac-
teria, 127 archaea and 215 eukaryote metabolic network 
reconstructions have been reported14. Many of them can 
be found in GEM databases, including BiGG Models63, 
BioModels64, MetaNetX65, MEMOSys66 and Virtual 
Metabolic Human67. However, most of these reconstruc-
tions lacked manual refinement, which may result in an 
inaccurate description of the organism and unreliable 
predictions of the model14. Therefore, the community 
developed reconstruction and GEM quality standards 
(MEMOTE)68 to provide an overall evaluation of the 
quality of a reconstruction and limitations on its use.

Of the published reconstruction models, we focus on 
108 models deposited in BiGG Models63, a widely used 
repository for high-quality GEMs, where all models have 
been benchmarked against MEMOTE68. The content of 
these curated GEMs is detailed in Fig. 2. As with the 
availability of genome sequences, the numbers of reac-
tions and metabolites accounted for in curated models 
continue to grow (Fig. 2b). Particularly, we observe a rapid 
increase in both the number of reactions and the num-
ber of metabolites since 2015, due to the development 
of models for eukaryotes, cyanobacteria and species 
belonging to the phyla Firmicutes and Actinobacteria.

Despite the substantial growth in the number of net-
work reconstructions, their coverage of the tree of life is 
still limited. A multiple correspondence analysis (MCA; 
the counterpart of principal component analysis for 

categorical data) of the reactomes of 108 GEMs (Fig. 2c) 
showed that the clustering of the models by their metab-
olic functions is strongly related to their phylogeny. 
MCA also suggested that the differences among prokar-
yotic models are relatively small. By overlaying the 108 
models on the tree of life (Fig. 2d), we observed results 
similar to those obtained by MCA performed in 2014 
(reF.44), namely that network reconstruction efforts have 
been mainly focused on Proteobacteria, leaving many 
other phylogenetic branches without any available 
reconstructions. Although this observation is only based 
on the 108 models in BiGG Models, it is clear that the 
development of GEMs for less studied organisms may 
greatly expand the coverage of metabolic pathways and 
the ‘reactome’ represented by curated GEMs (Fig. 2b).  
A large-scale effort is needed to establish a global  
metabolic atlas, with ‘global’ referring to the tree of life.

Evolution of the E. coli GEM
The serial development of E. coli metabolic reconstruc-
tions has led to the expansion in the scope and appli-
cations of GEMs. Figure 3 depicts the iterations69–77 of 
the E. coli GEMs published since 2000 and the changes 
in the model content. In this section, we focus on the 
development of metabolic models (M models); ME 
models shown in Fig. 3 are discussed in later sections. 
The first two reconstructions (not shown in Fig. 3) were 
developed before the E. coli genome was sequenced and 
were based solely on biochemical knowledge. After the 
genomic sequence of E. coli K-12 MG1655 was estab-
lished in 1997 (reF.78), its annotation and new discoveries 
of metabolic functions led to a series of genome-scale 
reconstructions of ever-increasing scope and content.

The latest E. coli model, iML1515, now includes 
1,515 genes76. iML1515 has comprehensive coverage of 
metabolic functions integrated with protein structural 
information, enabling growth simulation on different 
nutrients for strains of interest as well as an evaluation 
of mutational impact across strains using structural biol-
ogy methods76,79,80. iML1515 was used to simulate gene 
knockouts on 16 different carbon sources and predicted 
gene essentiality across conditions with an accuracy of 
93.4% compared with experimental data, highlighting 
the potential to identify drug targets using GEMs of 
pathogenic organisms.

In addition, iML1515 was used to analyse transcrip-
tomics data from 333 experiments with various conditions 
and provided valuable insight into transcriptional varia-
tion across conditions. For example, the three isozymes 
of aspartate kinase (lysC, metL, and thrA) have variable 
expression across conditions. iML1515 simulation sug-
gests that when only lysC is expressed, E. coli is unable 
to synthesize l-threonine, l-methionine, l-isoleucine, 
biotin and adenosylmethionine biomass components, 
which explains why lysC is preferentially expressed in 
nutrient-rich conditions when these metabolites are 
available.

Of the 4,623 open reading frames annotated on 
the E. coli K-12 MG1655 genome sequence, 1,600 are 
of unknown function (the so-called y genes)81, leaving 
3,023 genes of known function on which to base a recon-
struction. With the 1,515 genes in the latest metabolic 

Box 1 | Why build computational models?

Computational models describe a system through a mathematical formalism enabling 
the study of its behaviour through simulation. Models are prevalent in the physical 
sciences, but are less common in biology. the motivation for building models can be 
broken down into five categories133.

organize disparate information into a coherent whole
Network reconstructions represent a formal organization of knowledge that can 
subsequently be converted into computational models. Genome-scale models (GeMs) 
enable systems-level understanding and analysis, and produce predictions based on 
the scope, coverage and quality of the underlying reconstruction44,68.

identify important components and interactions in a complex system
an early use of GeMs was to compute gene essentiality72,134. For a poorly characterized 
organism, Geobacter sulfurreducens, GeMs produced a deep understanding of acetate 
uptake, acetate activation and altered amino acid metabolism135.

Make new discoveries
GeMs can be used to simulate perturbation to a metabolic system to identify essential 
metabolites and to find its structural analogues as candidate drugs that inhibit the 
enzymes that degrade the metabolite136. GeMs have enabled designs of growth-coupled 
methylation systems137.

Fill in knowledge gaps
GeM prediction of ‘no growth’ under a condition where the organism experimentally 
grows is called a ‘false negative’ prediction, which is usually a result of a missing 
component in the GeM. Gap-filling procedures138–140 and other methods141 were 
developed to address this issue, driving discoveries and making important corrections 
to conventional wisdom.

Understand the essential and qualitative features
Qualitative features are important for complex systems. For example, global proteomics 
data and GeMs helped identify the fear–greed trade-off in Escherichia coli growth125.  
E. coli was shown to have nearly half of the proteome mass unused in certain environments. 
this ‘unused’ proteome is involved in nutrient- and stress-preparedness functions that 
may convey fitness benefits in changing environments.

Reactomes
All the reactions involved in 
genome-scale models (or a 
certain model of interest). each 
base unit is a reaction, and  
the entities are metabolites 
involved in the reactions, such 
as proteins, nucleic acids and 
small molecules.
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network reconstruction, ~50% of the functionally anno-
tated genes are accounted for. The known biochemical 
functions of the corresponding gene products can now 
be computationally assessed in the context of the func-
tion of all the other gene products. This coverage forms 
the genetic and biochemical basis for the metabolic 
systems biology of E. coli.

Thus, the scope of GEM applications has increased 
with the expansion of metabolic coverage. The early 
models were used to compute basic phenotypes such as 
growth rate, by-product secretion and yield of cofactors. 
Other applications of E. coli GEMs have been reviewed 
elsewhere10,11. The most recent GEMs now enable appli-
cations such as pan-genome analysis, computation of 
proteome allocation and the simulation of various stress 
responses, which we discuss in detail next.

Emerging applications of GEMs
The availability of genome-scale multi-omics data sets 
is growing rapidly, including whole genome sequences, 
transcriptomics, proteomics and metabolomics data. 
This calls for the development of tools to interpret and 
contextualize such data sets. Therefore, to enable direct 
integration of such data with GEMs, recent model devel-
opment introduced macromolecular expression into the 
M models to produce ME models, which allow direct 
comparison between the simulation and experimental 

data. Additionally, earlier GEMs were usually developed 
on the basis of a representative strain from a species, 
but the availability of multiple genome sequences within 
a species allows us to develop strain-specific GEMs to 
explore variation across strains.

In this section, we discuss three new directions in 
the development of GEMs and their emerging applica-
tions; multistrain analyses that enable investigations into 
strain-specific variation; ME models that can compute 
proteome allocation; and simulation of stress responses 
that facilitate an understanding of complex phenotypes. 
Other directions in GEM development that have been 
addressed in other reviews include but are not limited to 
the integration of GEMs with structural biology82, mod-
elling of complex communities such as the microbiota83, 
and tissue- or cell-specific models constrained by 
multi-omics data84.

Multistrain analysis
With the ever-increasing number of genome sequences, 
it has become clear that large variations exist in the gene 
portfolio across strains of a species. In 2005, the concept 
of the pan-genome — the total list of genes found in 
all sequenced genomes of strains belonging to a species 
— was introduced. The pan-genome is composed of  
a core genome (that is, genes shared by all strains within a  
species) and an accessory genome (that is, genes present 
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in only a subset of strains)85. Although some species have 
relatively conserved gene portfolios (known as a closed 
pan-genome), other species have substantial variability 
in strain-specific gene portfolios (known as an open 
pan-genome).

E. coli was shown to have substantial differences in 
gene portfolios across strains, with as little as ~20% of 
the total number of genes annotated being shared across 

the sequenced strains86. The diversity in gene portfolios 
is thought to be a reflection of adaptation to different 
microenvironments. Many other microorganisms 
share this characteristic, including Salmonella spp.87, 
Staphylococcus aureus88 and Klebsiella pneumoniae89. It 
has become clear that it is important to understand the 
broad range of metabolic capabilities encoded by acces-
sory genes as they could potentially contribute to the 
pathogenicity and interactions with a human host90.

‘Pan-genome analysis’ typically refers to compara-
tive analysis of genes across strains. Building GEMs for 
many strains offers a much deeper analysis based on 
all the mechanisms that GEMs contain for metabolic 
processes. The workflow to generate strain-specific 
models is illustrated in the left panel in Fig. 4. Genomes 
of strains of interest are mapped to a curated reference 
reconstruction to generate a homology matrix, which is 
used to guide the deletion of genes and reactions from 
the reference model to create draft models. Manual 
curations are needed to finalize strain-specific GEMs 
(Fig. 4). The first multistrain GEM studies from 2013 
established GEMs for a set of 55 E. coli and Shigella spp. 
strains91. By simulating growth capabilities on different 
nutrient resources, the study predicted strain-specific 
auxotrophies and unique metabolic capabilities that 
correspond to their pathotypes and colonization sites. 
The simulated growth phenotypes separated the strains 
on the basis of their pathotypes, as most commensal 
strains were unable to grow on a set of nutrients, such 
as N-acetyl-d-galatosamine, which supports growth for 
100% of extraintestinal pathogenic strains. In addition, 
12 of the 55 strains were predicted to be unable to pro-
duce at least one essential biomass component, includ-
ing folate, thiamin and amino acids from glucose M9 
minimal medium, some of which are confirmed in the 
literature.

More recent pan-genome studies of E. coli explored 
the linkage between metabolism and health outcomes. 
A study of metabolic capabilities of clinical isolates of  
E. coli strains from individuals with inflammatory bowel 
disease (IBD)92 (Fig. 4) compared growth simulation of 
strain-specific models of clinical isolates and commen-
sal strains, and identified a pathway specific to strains 
from the B2 phylogroup that are prevalent in individuals 
with IBD. This pathway is involved in metabolizing the 
mucus glycan through the action of tagatose bisphos-
phate aldolase, which potentially aids E. coli strains in 
the colonization of intestinal mucosa92.

In a separate study using time series metagen-
omics data from an individual with IBD93 (Fig. 4), we 
found multiple E. coli strains dominating the microb-
iota at different time points as the inflammation level 
varied. Strain-specific GEMs were reconstructed for 
each strain, and the metabolic capabilities delineated 
by strain-specific GEMs were vastly different across 
these dominant strains. The models suggest that the 
strain extracted during the peak inflammation is 
the most similar to known representative pathogenic 
strains in IBD, whereas dominant strains extracted 
from low-inflammation time points were more sim-
ilar to commensal strains. Specifically, the dominant 
strain present during peak inflammation and known 
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Fig. 3 | Historical development of E. coli genome-scale models. Development of 
existing and potential future genome-scale models (both metabolic models, shown in 
orange, and metabolic and macromolecular expression (ME) models, shown in blue)  
of Escherichia coli. The genome-scale metabolic model of E. coli first appeared in the  
early years of the first decade of the twenty-first century (2000s). An increasing scope  
of biological functions has been incorporated into the model, leading to various 
generations of the metabolic models as new discoveries were made. In the early 2010s, 
ME models that incorporate transcription and translation mechanisms emerged. Multiple 
efforts followed to improve and expand the ME model. Going into the 2020s, extensions 
of stress response modules have been added to ME models. Future directions involve 
incorporation of the sensome to form the StressMe model, and the inclusion of toxins, 
biosynthetic gene clusters and cell cycle. Ovals indicate models, and boxes represent 
data incorporated to generate the models. According to the naming convention for 
network reconstructions, model names consist of an i for ‘in silico’ followed by the initials 
of the person(s) who built the model, and the number of open reading frames accounted 
for in the reconstruction. E matrix, expression matrix.

Sensome
The components (such as 
genes and proteins) in an 
organism or cell that are 
involved in sensing the changes 
in the environment.
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pathogenic strains were predicted to share the capabil-
ity to grow in a set of substrates, including cellobiose, 
deoxyribose and monosaccharides derived from intes-
tinal mucosa, suggesting that strain-specific features 
are potentially linked to pathogenicity and disease 
progression.

The application of GEMs for pan-genome analy-
sis is not limited to E. coli. Great potential exists 
for use of GEMs to study pathogens to understand 
strain-specific features and their association with col-
onization sites, pathogenicity and antibiotic resistance 
and their impact on human health. Several published 
studies have already used strain-specific GEMs to fur-
ther understand strain-specific characteristics of various 
microorganisms.

Salmonella spp. were shown to have serovar-specific 
metabolic traits, including auxotrophies and catabolic 
pathways that may be associated with adaptations to 
their colonization sites87. The metabolic capabilities 
of S. aureus were found to link to pathogenic traits 
and virulence acquisitions, which can then be used to 

classify mild versus severe infections94. For example, two 
S. aureus USA300 isolates were predicted to be the only 
strains capable of using spermidine as a sole source of 
carbon and nitrogen94. Spermidine is produced in areas 
of inflammation and wound healing95, which give these 
strains the opportunity to cause skin infection. A study 
of K. pneumoniae strains with antibiotic resistance 
pheno types suggested differential utilization of nitrogen 
sources may help discriminate between antibiotic resist-
ance phenotypes96. Similar studies have also been per-
formed for other species: strain-specific Acinetobacter 
baumannii GEMs97 revealed the significant variation in 
lipopolysaccharide across strains; GEMs of Leptospira 
spp. delineated the differences in lysine metabolism 
between pathogenic and commensal Leptospira spp.98; 
and Pseudomonas putida strain-specific models reflected 
the diverse metabolic capabilities across strains due to 
variations in environmental niches99.

For a large number of sequenced genomes (more 
than 1,000 strains), it has been shown that the gene port-
folio of individual strains can be characterized not only 
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of target strains. These models can then be finalized by manual curation. Strain-specific models were used to reveal variation 
in metabolic capabilities across different pathotypes, as illustrated in three studies shown on the right. The first multistrain 
study of Escherichia coli genome-scale models (GEMs) found metabolic capabilities predicted by GEMs correspond to the 
pathotype and environment. In the second study, comparison of GEMs constructed for inflammatory bowel disease (IBD) 
clinical isolates suggested a possible link between metabolic functions of B2 strains and their prevalence in individuals  
with IBD. Lastly, GEMs of dominant strains in an individual with IBD revealed the potential correlation between metabolism 
and inflammation91–93. QC, quality control. Panel ‘Strains of different pathotypes’ adapted with permission from reF.91,  
PNAS. Panel ‘IBD clinical isolates’ adapted from reF.92, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). Panel 
‘Dominating strains in IBD gut microbiota’ adapted from reF.93, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).
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in terms of the presence or absence of a gene but also in 
terms of the particular allele of the gene. Thus, a field of 
‘alleleomics’ may have emerged. Alleleomic analysis was 
shown to be valuable for studying organisms with closed 
pan-genomes. Using a GEM-based machine learning 
classifier, one study100 was able to predict antimicrobial 
resistance in Mycobacterium tuberculosis, while enabling 
a biochemical interpretation of the genotype–phenotype 
map. Specifically, through investigation of key flux states 
discriminating between M. tuberculosis strains that are 
resistant to pyrazinamide and M. tuberculosis strains 
that are susceptible to pyrazinamide, the study authors 
correctly identified pncA and ppsA alleles as major 
genetic determinants, which had been reported in the 
literature, and proposed a new hypothesis that ansP2 
mutants may potentially contribute to resistance through 
l-aspartate-based modulation of the coenzyme A pool.

A semi-automated protocol for generating 
strain-specific models from a collection of strain-specific 
genome sequences has been made available2 to 
aid researchers in reconstructing and utilizing the 
strain-specific GEMs. This protocol details the major 
stages involved in strain-specific model generation and 
curation, accompanied by easy-to-follow tutorials in 
Python notebooks to ensure strain-specific GEMs are 
accessible to researchers interested in applying them 
to different organisms. The protocol does not require 
advanced coding skills.

The ME model
The demonstrated predictive ability and broad applica-
tions of GEMs of metabolism (M models) challenged 
their boundaries and drove further development. 
M models can be improved by increasing the number 
of constraints or by expanding their scope in terms of 
cellular processes represented. For instance, a framework 
that incorporates enzyme abundances as constraints in 
M models substantially reduces the solution space, but 
requires enzyme turnover numbers (so-called kcat val-
ues)101. Researchers have also developed models that 
integrate multiple layers (metabolism, transcription 
and signal transduction) of the bacterial organism using 
multi-omics data102.

Expanding the scope of GEMs to include proteome allo-
cation. A major effort focused on expanding M models  
to include a genome-scale account of translation and 
transcription, leading to so-called ME models (for 
‘metabolism and expression’). ME models are more 
fundamental than proteome- or enzyme-constrained 
models, as they explicitly incorporate a full reconstruc-
tion of the pathways that constitute transcription and 
translation in addition to metabolism, enabling the sim-
ulation of proteome composition. Thus, the constraints 
on the proteome are generated by the ME model itself 
as a part of computing a particular phenotypic state. 
The general formulation of ME models is depicted in 
Fig. 5. Like M models, ME models are solved using flux 
balances. ME models can thus be used to compute the 
proteome allocation between growth conditions of a 
strain (proximal causation) or evolutionary adaptation to 
a new condition (distal causation), which greatly expand 

the range of biological functions and behaviours over 
an M model.

Building ME models. The first large-scale network 
reconstructed to describe the transcriptional and trans-
lational machinery in E. coli appeared in 2009 (reF.103). 
The reconstruction was mathematically described by 
the expression matrix (E matrix) representing 13,694 
biochemical reactions that delineate the expression 
of genes and protein synthesis in E. coli. The E matrix 
incorporated all the functional components (proteins, 
nucleotides and so on) and pathways known at the time 
underlying translation and transcription, including bio-
synthesis, modification and degradation of RNA and 
protein complexes. This reconstruction was also con-
verted to a computational model to enable quantitative 
integration of omics data and simulation of phenotypic 
states; for example, the model predicted the ribosome 
production accurately under different conditions  
without any parameterization.

An ME model is an integration of the E matrix with 
an M model (Fig. 5). The M model describes the metab-
olic function and the E matrix delineates the macromo-
lecular expression pathways. The M model and E matrix 
are combined through their shared metabolites and cou-
pling constraints; that is, macromolecules are produced 
at a rate proportional to the rate of enzyme dilution to 
daughter cells (growth rate), proportional to the activ-
ity of the metabolic reaction and inversely proportional 
to the enzyme turnover rate (kcat). By incorporating the 
E matrix into an M model, ME models enable the cal-
culation of the cellular cost of enzyme synthesis, which 
is coupled to the reaction they catalyse. The maximum 
growth rate in ME models is thus solved by iteratively 
plugging in increasing growth rates until the maximum 
value that produces a solvable model is found.

Towards ‘proteometrics’. The ME model’s formulation 
essentially produces an econometric model of cellular 
functions. Each cell has a limited space for protein to 
perform its metabolic and growth functions (the size of 
the E. coli proteome is estimated to be about 2.5 million 
protein molecules per cell)104. By assigning a ‘capital 
expense’ (that is, investment in proteome synthesis — 
the hardware of the cell) to each metabolic function, the  
ME model provides a framework to determine the most 
protein-cost-effective way for the cell to perform its 
required functions. A consequence of this ME model 
characteristic is that the substrate uptake rates do not 
need to be defined a priori, as is the case for M models. 
Optimal substrate uptake rates are determined by the 
optimal protein composition. As ME models are econo-
metric in the sense that they compute the best ‘capital 
expenditures’ (that is, proteome allocation) and ‘operat-
ing expenses’ (that is, best metabolic state) to achieve a 
particular phenotypic state, one might think of them as 
being ‘proteometric’ models.

Whereas M model solutions fall within a multidi-
mensional solution space (that is, there are alterna-
tive solutions for any optimal objective value), ME model 
solutions at their maximum feasible growth rate are 
effectively unique. Furthermore, the ME model not only 

Proximal causation
explains traits/events (such as 
change in proteome allocation) 
in terms of immediate 
physiological or environmental 
factors.

Distal causation
explains traits/events (such as 
change in proteome allocation) 
in terms of evolutionary forces 
acting on them.

Expression matrix
(e matrix). A matrix that 
describes all components 
(including DNA, mrNA, 
proteins and metabolites) and 
reactions that are involved in 
the transcriptional and 
translational machinery in the 
organism of interest.

Nature reviews | Microbiology

R e v i e w s



predicts a cell’s maximal growth rate and corresponding 
metabolic fluxes but also computes the optimal proteome 
allocation and gene product expression level. The ME 
model basically represents molecular biology and bio-
chemistry on a genome scale, and through its mathe-
matical representation allows the computation of its fully 
balanced operation. However, it is worth noting that 
although the ME model covers both transcription and 
translation, it does not model the regulatory processes.

ME models are based on optimality principles with 
the implicit assumption that regulation will produce the 
computed phenotypic state. This characteristic opens up 
the ability to address a fundamental question: namely, 
do the evolved transcriptional regulatory processes 
reflect optimality principles that can be represented 
in an ME model? In other words, can evolution- and 
adaptation-produced outcomes be represented by the 
appropriate statement of an optimal function?

Experience with specific ME models and their appli-
cations. An ME model was first reconstructed for 
Thermotoga maritima, which has a genome with 1,877 
annotated genes. The ME model for T. maritima was 
developed as a prototype, returned accurate predictions 
of cellular composition and gene expression, and showed 
potential for aiding in the discovery of new regulons and 
genome annotation105. Growth simulation identified a 
set of genes with strong differential expression when  
T. maritima grows in minimal medium with l-arabinose 
or cellobiose as the carbon source, suggesting the pres-
ence of transcriptional regulation. The predicted differ-
entially expressed genes led the study authors to discover 
potential transcription factor-binding motifs that are 
similar to known motifs in other organisms, highlighting 
how ME models can guide discovery of new regulons.

A year later, an ME model was built for E. coli 
through the integration of the E matrix with the most 
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recent M model available75 (Figs 3,5). This ME model was 
able to better predict some phenotypes than M models 
due to its expanded scope and additional constraints. 
For example, unlike previous GEMs, the growth rate 
predicted by the E. coli ME model has a non-linear 
relationship with the substrate uptake rate, which is 
consistent with the long-standing empirical models of 
microbial growth. ME model simulation suggests that 
under nutrient-limited conditions, growth is constrained 
by substrate availability, whereas under nutrient-excess 
conditions, growth is limited by internal constraints on 
protein synthesis and catalysis. ME models can also pre-
dict the maximum batch growth rate and optimal sub-
strate uptake rate, which closely match experimental 
data from laboratory-evolved strains.

Subsequent efforts focused on the improvement of 
several aspects of the E. coli ME models (Fig. 3). One 
study added the protein translocation pathways across 
the inner membrane, leading to four cellular compart-
ments and membrane constraints that reflect the cell 
morphology106. Efforts to refine the enzyme turnover 
rate (kcat) through machine learning methods107 were 
undertaken, and a reformulation of the E. coli ME 
model computations by grouping major cellular pro-
cesses and implementing explicit coupling constraints 
drastically reduced the size of the stoichiometric matrix 
and computational solving time108.

The expanded predictive capability of ME models 
motivated their construction for other microorgan-
isms of interest. The development of an ME model 
for Clostridium ljungdahlii enabled the prediction of 
overflow metabolism that shed light onto medium opti-
mization strategies for bioproduction109. The Wood–
Ljungdahl pathway is the only known CO2-fixing 
pathway coupled to energy conservation in C. ljun-
gdahlii, and trace metals are crucial in this pathway. 

The ME model was able to evaluate the impact of trace 
metals on metabolite secretion as the model incorpo-
rated protein modifications accounting for these metals. 
Specifically, simulation results suggested that removal of 
nickel from the medium may reduce acetate production, 
leading to ethanol production as the main fermentation 
product, providing valuable insights into bioproduction 
design strategies. A summary of published ME mod-
els and their characteristics can be found in TABle 1. 
Additional species-specific models are under develop-
ment. It is worth noting that another ME model formu-
lation has been developed110 to model metabolism, gene 
expression and thermodynamic constraints, enabling 
new insights into the diauxic behaviour in bacteria111.

Thus far, ME models have been developed for only 
a few microorganisms besides E. coli due to the chal-
lenges regarding computational resources and model 
development. However, the reconstruction process of 
ME models has now been made easier with the develop-
ment of the software framework COBRAme108, a Python 
package that simplifies the process of reconstructing 
and analysing ME models. With the use of COBRAme, 
draft ME models can be constructed from a high-quality  
M model, a standard GenBank genome annotation file, 
curated enzyme subunit stoichiometries, mappings of 
enzyme complexes to a metabolic reaction and enzyme 
turnover rates. The ME model can also be made more 
sophisticated by incorporating enzyme prosthetic group 
information, post-transcriptional or post-translational 
modifications, protein translocation information, tran-
scription unit information and other cellular processes. 
Once they have been reconstructed, researchers are able 
to edit and simulate ME models using COBRAme, which 
uses a software architecture mirrored after popular GEM 
analysis tools such as COBRApy. The streamlined com-
putational and analysis pipelines in COBRAme have 

Table 1 | Summary of published ME models

Model organism coverage Key findings

T. maritima 
ME105

Thermotoga 
maritima

Metabolism, macromolecular synthesis, 
post-transcriptional modification and 
dilution to daughter cells

Accurately predicted cellular 
composition and gene expression; 
enabled new regulon discovery and 
genome annotation

iOL1650-ME124 Escherichia coli 1,650 genes and 1,295 protein 
complexes accounting for metabolism, 
gene expression and macromolecular 
synthesis

Accurate prediction of multiscale 
phenotypes: revealed the importance 
of proteomic constraints on growth, 
by-product secretion, metabolic flux and 
optimal uptake rates

iJL1678-ME106 E. coli Incorporated 4 compartments, 
(cytoplasm, periplasm and inner and 
outer membranes), translocation 
pathways and membrane constraints  
in iOL1650-ME

Enabled prediction of enzyme 
abundances and their cellular location; 
predicted impact of perturbations such 
as membrane crowding and enzymatic 
efficiency

iJL1678b-ME108 E. coli Compared with iJL1678-ME, 
reformulated coupling constraints, 
grouped major cellular processes and 
included non-equivalent changes

Significantly reduced free variables and 
solution time; increased accuracy in 
model prediction

iJL965-ME109 Clostridium 
ljungdahlii

965 genes and 735 protein 
complexes accounting for central 
metabolism, transcription, translation, 
macromolecule modifications and 
translocation

Produced accurate prediction of 
fermentation profiles, yielding deep 
interpretation of overflow metabolism 
products, gene expression and use of 
cofactors and metals

ME, metabolic and macromolecular expression.

Overflow metabolism
When cells incompletely 
oxidize their substrate (which 
yields less energy) instead of 
using the more energetically 
efficient respiratory pathways 
to completely oxidize their 
substrates even when oxygen 
is available.
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enabled a substantially expanded range of computational 
predictions, as we discuss in the following section.

It is worth mentioning that assembling the two data 
types mentioned above — enzyme complex stoichi-
ometry and enzymatic turnover rates — can present 
bottlenecks when one is constructing ME models. For 
well-studied microorganisms, assembling enzyme com-
plex compositions can be aided with the use of expertly 
curated organism knowledge bases such as MetaCyc112. 
Alternatively, elucidating enzyme turnover rates on a 
systems level is an area of ongoing research113 that has 
recently been facilitated by the use of machine learning 
and omics data sets107,114. Further work is necessary to 
determine the sensitivity of ME models to these param-
eters and the degree to which these quantities may be 
conserved across microorganisms.

Beyond ME models lie many additional cellular 
processes. Whole-cell models of the human pathogen 
Mycoplasma genitalium115, Saccharomyces cerevisiae116 
and E. coli117 have been developed. The whole-cell model 
is composed of independent modules describing particu-
lar cellular processes, such as cell replication, transcrip-
tional regulation and DNA maintenance. Differently 
from ME models, whole-cell models are computed by 
simulating each module over a short time increment. 
Additionally, the enzyme abundances in whole-cell 
models are variables determined by the previous sim-
ulation increment, whereas enzymes in ME models 
are directly imposed as metabolites in their metab olic 
reactions, which ensures that protein limitation has a 
dominant role in defining the metabolic flux state.

From growth to stress responses
The scope and range of prediction continue to grow as 
the coverage of cellular processes in GEMs expands118–123. 
Whereas M models enable predictions of growth on 
different nutrients, metabolite secretion and auxotro-
phy, ME models have added capabilities to simulate the 
proteome allocation and RNA-to-protein mass ratio for 
a given phenotype124, and differential gene expression 
levels across environmental shifts105.

Combined with genome-scale multi-omics data, ME 
models have become useful tools that provide a mech-
anistic and systems-level understanding of E. coli. The 
integration of ME models and global proteomics data was 
used to characterize the unused proteome, that is, protein 
molecules that are not utilized or are underutilized for 
cellular growth (although they might be synthesized), 
and protein molecules that are present in excess in E. coli. 
By comparing the number of protein molecules needed 
for growth predicted by the ME model with quantita-
tive proteomics data, O’Brien and colleagues identified 
proteins that were not used for growth. The unused pro-
teins were shown to decrease with increasing growth rate, 
suggesting that there exists a fitness trade-off between 
growth rate and the unused proteins encoding stress- and 
nutrient-preparedness functions. This trade-off possibly 
conveys fitness benefits in changing environments while 
taking resources away from growth125.

The ME model formulation can demand that trans-
lated proteins are folded, equipped with the proper pros-
thetic groups and assembled into protein complexes to 

perform their enzymatic function. Modelling the pro-
teome with this level of detail inherently provides a 
robust link between metabolism and the biosynthesis 
of functional enzyme complexes126. ME models there-
fore enable genome-scale investigations into the cellu-
lar response to any dysfunction in protein synthesis or 
maintenance, such as those that can occur when cells 
experience stress conditions. Thus, several extensions 
of ME models have recently been developed to describe 
stress response and mitigation functions in mechanistic 
detail127–129. Taking E. coli as an example, reconstruc-
tions of known stress response mechanisms have been 
integrated with ME models to form a new generation 
of models: FoldME128, OxidizeME129 and AcidifyME127, 
which simulate the response to thermal, oxidative, and 
low-pH stress, respectively (Figs 3,5). Each of these envi-
ronmental stresses are relevant to the lifestyle of E. coli, 
particularly when existing in a host organism.

The FoldME model extension expands the ME 
model to include peptide folding (chaperone-mediated 
or spontaneous folding) while taking into account basic 
biochemical properties such as protein folding rates 
and thermostability. By detailing these proteostatic 
mechanisms, FoldME is capable of describing protein 
folding, denaturing and catalytic activity as a function 
of temperature on a genome scale. Use of FoldME pro-
duced multiscale predictions for cellular adaptations 
under high temperature by introducing the unfolded 
state of the proteins and in vivo protein folding as a 
competition between spontaneous folding and DnaK- 
or GroEL-assisted folding (Fig. 5). FoldME faithfully 
recapitulated the temperature-dependent growth rate 
and changes in protein abundances128 — as the opti-
mal growth temperature for E. coli is exceeded, more 
proteome denatures, forcing more chaperones to be 
expressed, and therefore less of the total proteome is 
available for growth functions.

Another universal stress that may hinder cell growth 
is reactive oxygen species (ROS). Oxidative damage 
in a cell can manifest itself in multiple ways, including 
oxidation and demetallation of the mononuclear iron 
cofactors in metalloproteins, iron–sulfur cluster cofactor 
damage and DNA damage. The OxidizeME extension 
was constructed by incorporating pathways involved in 
these ROS-based damage and repair processes (Fig. 5). 
Furthermore, structural biology was applied to determine 
which proteins, based on the position of metallic cofac-
tors in the 3D structure of the enzyme, were most suscep-
tible to ROS damage. As ME models explicitly require the 
presence of the proper unimpaired cofactors in order for 
an enzyme to possess any catalytic function, the model 
could assess the systems-level effects of oxidative dam-
age and repair in E. coli. OxidizeME correctly predicted 
the phenotypes under oxidative stress, such as aromatic 
amino acid auxotrophy, carbon source-dependent ROS 
sensitivity and stress-specific differential gene expres-
sion, and traced the possible mechanisms involved in 
iron–sulfur cluster biosynthesis129.

Such effort was also extended to pH stress to eluci-
date the changes in cellular responses under acidic con-
ditions. AcidifyME simulates pH-dependent membrane 
lipid fatty acid composition, periplasmic protein stability 
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and periplasmic chaperone protection, and membrane 
protein activity at low pH (Fig. 5). It recapitulated differ-
ential gene expression under acid conditions, enabled a 
systematic and mechanistic understanding of acid stress 
response and most importantly suggested potential inter-
vention strategies127. For example, model simulation sug-
gests that knocking out hdeB, the gene encoding the only 
known periplasmic chaperone in E. coli, would result in 
no growth under acidic conditions. If such predictions can 
be verified by experimental studies, HdeB could become 
a promising antimicrobial target to inhibit E. coli growth 
in acidic environments such as the human digestive tract.

Conclusions
The first annotated genome sequences appeared 
in the mid to late 1990s. With metabolism being a 
well-characterized cellular process, a comprehensive list of 
metabolic genes was identified in these newly sequenced 
genomes. The recognition that the biochemical functions 
of enzymes could be defined led to the formulation of a 
process for network reconstruction at the genome scale. In 
other words, one could, in principle, reconstruct the entire 
metabolic network from an annotated genome sequence. 
In practice, reconstruction technology has advanced over 
the past 20 years to include protocols to deal with issues 
arising from incomplete genome annotation and the 
development of quality control standards.

Reconstructions are knowledge bases that have 
many uses. One use detailed here is the conversion of 
knowledge into computational models that represent 
the functions of an ‘in silico’ cell whose properties can 
be computationally simulated. These models open up 
the comparison between characterization of what is 
known about an organism (that is, the GEM) and how 
the organism actually functions. As we do not have com-
plete knowledge of any organism, the difference between 
the two (observed and simulated functions) has proved 
to be a guide to the discovery of missing parts and an 
understanding of integrated cellular functions.

The computation of biological functions needs to 
represent proximal and distal causation. GEMs for-
mulated through a constraint-based formalism can 
represent both, and thus simulate dual causation130. 
Proximal causation can be comprehensively detailed 
through the inclusion of increasingly accurate biophys-
ical representations of cellular processes. This approach 
has led to the formulation of whole-cell models of 
M. genitalium115, S. cerevisiae116 and E. coli117 to describe 
in increasing biophysical detail their molecular com-
ponents and interactions115. These models become 
increasingly specific to a particular strain functioning 
in particular environments.

Distal causation can be pursued through adaptive lab-
oratory evolution and through pan-genomics. Here, the 
differences between strains and species are considered, 
and the question of interest is how natural selection leads 
to adaptation and longer-term evolution. Reconstruction 
and GEMs are used as tools to understand how selec-
tion pressures have shaped the gene portfolios with the 
corresponding phenotypic potential. The most com-
prehensive description of the formulation, underlying 
philosophy and use of constraint-based models is found 
in a recent textbook131.

As reviewed here, GEMs have developed over 
20 years, starting with metabolism then expanding 
in scope to include transcription and translation and 
stress functions. They will continue to grow in their 
scope and accuracy in the representation of known 
cellular functions. Comprehensive representations of 
two-component systems and the structural proteome76,79 
are now possible, as are cell division mechanisms, whose 
inclusion will refine the models from representations of 
populations to individual cells. This process will contin-
ually improve our understanding of how microbial cells 
function and evolve and will likely one day assist with 
the design of synthetic genomes.
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