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Like other forms of engineering, metabolic engineering requires
knowledge of the components (the ‘parts list’) of the target system.
Lack of such knowledge impairs both rational engineering design
and diagnosis of the reasons for failures; it also poses problems
for the related field of metabolic reconstruction, which uses
a cell’s parts list to recreate its metabolic activities in silico.
Despite spectacular progress in genome sequencing, the parts
lists for most organisms that we seek to manipulate remain highly
incomplete, due to the dual problem of ‘unknown’ proteins and
‘orphan’ enzymes. The former are all the proteins deduced from
genome sequence that have no known function, and the latter are
all the enzymes described in the literature (and often catalogued
in the EC database) for which no corresponding gene has been
reported. Unknown proteins constitute up to about half of the
proteins in prokaryotic genomes, and much more than this in

higher plants and animals. Orphan enzymes make up more than a
third of the EC database. Attacking the ‘missing parts list’ problem
is accordingly one of the great challenges for post-genomic
biology, and a tremendous opportunity to discover new facets of
life’s machinery. Success will require a co-ordinated community-
wide attack, sustained over years. In this attack, comparative
genomics is probably the single most effective strategy, for it
can reliably predict functions for unknown proteins and genes for
orphan enzymes. Furthermore, it is cost-efficient and increasingly
straightforward to deploy owing to a proliferation of databases and
associated tools.

Key words: comparative genomics, metabolic reconstruction,
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INTRODUCTION

Metabolic engineering, the targeted manipulation of pathways
and transporters using recombinant DNA, is a fairly mature
technology for micro-organisms [1] and a maturing one for plants
[2–4]. However, its potential is often limited by ignorance of the
components of the target metabolic network, i.e. the system’s
‘parts list’. In many cases, this ignorance extends to the core
components of target pathways, such as metabolite transporters
in plants [5,6], but even more often it involves not knowing what
else besides the core components is ‘out there’ in the system.
An illustration of this is that engineering the lysine biosynthesis
pathway in plants uncovered a previously unknown lysine
catabolism enzyme as a key component of the lysine network [7].

Ignorance of parts lists also limits the effectiveness of metabolic
reconstructions [8–10] (using the genome sequence to reproduce
an organism’s complete metabolic network in silico) by giving rise
to metabolic gaps [11] or ‘missing network content’ [12]. Besides
its many applications in metabolic engineering [13], metabolic
reconstruction is being increasingly used to explore the interaction
of microbes with their environments [14,15] and to understand
pathogen function inside and outside the host [16–18]. But if the
parts list of proteins in the genome is highly incomplete, as it often
is, an organism’s capabilities will inevitably be underestimated.
Similarly, in biomedicine, proteomic and transcriptomic screens
for disease states have uncovered many unknowns (biomarkers)
that correlate with these states [19,20]. But going from there to
mechanistic understanding and rational drug therapies demands
knowledge of function [21,22].

It is therefore clearly crucial to know organisms’ metabolic
parts lists, i.e. to assign functions to all of the proteins associated
with metabolism. But we are still far from this goal, and the gap
between the richness of genomic information and our knowledge
of protein function is, in a certain sense, actually growing.
Because this ‘unknown’ protein problem has not had coverage
commensurate with its importance, the first section of this review
documents its scope. Because one of the most powerful ways of
attacking the problem, i.e. comparative genomics (taken to mean
the integrated analysis of genomes and post-genomic data), is
still underutilized by biochemists, the second section outlines the
principles whereby comparative genomics can predict functions
for unknown proteins. The last section illustrates application of
these principles using as examples enzymes that bacteria and
eukaryotes have in common.

‘UNKNOWN’ PROTEINS: THE ELEPHANT IN THE ROOM

The scope of the unknown protein problem

The large-scale sequencing of genomes has revealed that 30–
40% of the proteins encoded by typical bacterial genomes have
no clearly known function [8,23]. Moreover, many of the ‘known’
functions may be uncertain inasmuch as they are unsupported by
experimental evidence; even in an organism as well studied as
Escherichia coli, there is experimental information for only 54%
of the gene products [24]. The prevalence of unknowns is even
greater in archaeal and eukaryotic genomes, and is well over 50 %
in higher plants and animals [8,24–26] (Figure 1A).

Abbreviations used: KFA, N-formylkynurenine formamidase.
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Figure 1 Scale and relentless growth of the unknown protein and orphan
enzyme problems

(A) The percentages of known and unknown proteins encoded by representative genomes.
The numbers of known proteins were estimated from the SEED database by summing
protein-encoding genes included in subsystems and those with non-hypothetical functions not
in subsystems. Since this assumes that all proteins in subsystems have known functions, and
some such functions are merely reasonable hypotheses, this gives a generous estimate of
known proteins. (B) A qualitative sketch of the relationship between the number of conserved
unknown proteins and the number of genomes sequenced, from an exploratory analysis by
R. Overbeek and A. L. Osterman (personal communication). The SEED database was used to
estimate the number of protein families (corresponding roughly to orthologues) comprising at
least five members from genomes representing two or more genera (thereby excluding very
local families). A jackknife approach was then used to compute an average number of families
(blue curve) in bundles (‘runs’) of progressively increased size from 20 genomes up to 650
genomes per run. The lower curve in red shows the number of families having at least some
elements of function assigned (i.e. at least a general function such as ‘sugar kinase’ deduced
from homology). Note again the generosity of this estimate of the number of proteins that
have a known function. The yellow area between the curves represents the number of unknown
families. (C) Cumulative total numbers of biochemical activities (EC numbers) characterized
between 1950 and 2000, and those that are still orphans. Data are derived from Figure 1
of [33].

Thus with ∼1000 genomes now completed, if a conservative
average of 3000 genes per genome is assumed, it follows that
today’s databases contain ∼106 unknown proteins. Some of
these are organism-specific (so-called ‘ORFans’ [8,27]), but the
vast majority belong to unknown orthologue families, of which
there are thousands [8,28]. Furthermore, as more genomes are
sequenced, more protein families are found (Figure 1B, blue
line) and only a minority of them have known or partially known
functions (red line). Of course, only a fraction of unknown protein
families are associated with metabolism (as enzymes, transporters
or regulators). But there is reason to think that it is a significant
fraction given (i) the prevalence of gaps in known metabolic
networks [12], (ii) the fact that new metabolic functions continue
to be discovered even in well-characterized organisms such as
E. coli [29], and (iii) the many cases where the same pathway step
turns out to be mediated by totally different proteins in different
organisms (‘non-orthologous displacement’) [30].

The reverse side of the unknown protein problem is that
some 36% of the 3736 enzymes with an EC number have no
matching protein or gene sequences; these have been termed
‘orphan enzymes’ [9,31–33] and are listed in the ORENZA and
ADOMETA databases (Table 1). Since only 60–80 % of enzymes
have EC numbers [9], this implies that there are ∼1900 orphan
enzymes in total. Like unknown protein families, the number of
orphan enzymes is growing (Figure 1C).

The dual problem of proteins with no matching function and
biochemical functions with no matching protein is thus a huge one.
Making these matches presents one of the most urgent challenges
of the post-genomic era; it can only be met by community-wide
mobilization [8,34,35].

Ubiquitous unknowns: the top targets

As noted above, most unknown proteins belong to orthologue
families that occur in a range of genomes. In some cases, this
range is extremely broad, and includes most or even all forms of
life from bacteria and archaea to higher plants and mammals
[8,28]. There are many such widely distributed (henceforth
‘ubiquitous’) proteins, as shown by the OrthoMCL database of
orthologous protein families [36]. For instance, most bacteria
share >400 orthologue families with Arabidopsis and humans; of
these, about half lack known functions. Ubiquitous proteins are
plainly ancient in origin [37] and must have crucial functions
in metabolism, transport or core cellular processes such as
translation that are shared by all organisms [8,10]. Thus, among
all the families of unknown proteins, the ubiquitous ones merit
the highest priority for functional characterization because they
have the greatest potential payoff in new biological knowledge
[8,10]. Fortunately, they are also the best targets for comparative
genomics approaches, as we now discuss.

THE PREDICTIVE POWER OF COMPARATIVE GENOMICS

Beyond homology-based predictions

Homology-based approaches to predicting function, from pair-
wise sequence comparisons [38] to fold-recognition algorithms
[39], obviously only work when at least one of the orthologues
in a family has an experimentally verified function. Although
long-range homology can sometimes correctly place unknown
proteins in a general class (e.g. ‘esterase’), assigning a precise
function calls for approaches that go beyond homology. Enter
comparative genomics. Broadly defined, comparative genomics
is the integration of different types of genomic and post-genomic
evidence to link protein with function. It began in the late 1990s
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Table 1 Publicly available databases and analysis platforms for
comparative genomics research

Name URL

Integrative databases
SEED http://www.theseed.org/wiki/index.php/Main_Page
STRING http://string.embl.de/
JCVI CMR http://cmr.jcvi.org/tigr-scripts/CMR/CmrHomePage.cgi
MicrobesOnline http://www.microbesonline.org/
JGI http://img.jgi.doe.gov/cgi-bin/pub/main.cgi

Phylogenetic occurrence
PHYDBAC http://igs-server.cnrs-mrs.fr/phydbac/
MBGD http://mbgd.genome.ad.jp/
NMPDR Signature Genes tool http://www.nmpdr.org/FIG/wiki/rest.cgi/

NmpdrPlugin/search?Class=SigGenes
JGI Phylogenetic Profiler http://img.jgi.doe.gov/cgi-bin/pub/main.cgi?section =

PhylogenProfiler&page=phyloProfileForm
Gene fusion events

FusionDB http://igs-server.cnrs-mrs.fr/FusionDB/main.html
Regulatory sites

SwissRegulon http://www.swissregulon.unibas.ch
PRODORIC http://www.prodoric.de

Microarray data
GenExpDB http://chase.ou.edu/oubcf/
ATTED http://www.atted.bio.titech.ac.jp/
Golm Transcriptome Database http://csbdb.mpimp-golm.mpg.de/csbdb/

dbxp/ath/ath_xpmgq.html
Protein–protein interaction

DIP http://dip.doe-mbi.ucla.edu/dip/Main.cgi
APID http://bioinfow.dep.usal.es/apid/index.htm
eNet http://ecoli.med.utoronto.ca/

Plant organellar proteomes
PPDB http://ppdb.tc.cornell.edu/
SUBA II http://www.plantenergy.uwa.edu.au/suba2/

Plant phenomes
RAPID http://rarge.gsc.riken.jp/phenome/
SeedGenes http://www.seedgenes.org/
Chloroplast2010 http://www.plastid.msu.edu/

Protein structures
PDB http://www.rcsb.org/pdb/home/home.do
PHYRE http://www.sbg.bio.ic.ac.uk/phyre/
PSIPRED GenTHREADER http://bioinf.cs.ucl.ac.uk/psipred/

Orphan enzymes
ORENZA http://www.orenza.u-psud.fr/
ADOMETA http://vitkuplab.cu-genome.org/html/

adometa/adometa.html

just after the first set of genomes was sequenced. Ten years later,
the success stories are now plentiful and several reviews have
covered both techniques and specific examples (e.g. [40–43]).

The ‘guilt by association’ principle

The basic principle by which comparative genomics predicts
functions is ‘guilt by association’: it finds associations between
known and unknown genes in sequenced genomes, and deduces
probable functions from these associations [44]. A familiar
example is the grouping of bacterial genes into operons, in which
the genes encode related functions such as steps in a metabolic
pathway. In this case, the function of an unknown gene can
be inferred from those of known genes in the operon. Many
other types of associations besides operonic arrangements can
be derived from whole-genome datasets and their attendant post-
genomic resources [41,45–47]. These are summarized in Figure 2
and briefly described below, along with relevant databases and
tools (which are listed with their URLs in Table 1). The databases
listed are primarily for bacteria and plants, reflecting the authors’
expertise.

Associations based on genomes

Gene clustering

Of the ways in which genes can be associated, gene clustering, i.e.
proximity in the genome, is the most generally useful. Although
not absent from eukaryotes [48,49], clustering is far more marked
in prokaryotes, where functionally related genes not only are
arranged in operons, but also can be divergently transcribed from
the same promoter region [45] or may simply be neighbours
or near-neighbours, even though not co-transcribed [45,50]. On
average, ∼35% of bacterial metabolic genes are in conserved
clusters [45]. Clusters that are conserved across diverse genomes
are the most informative [45,50], which is one reason ubiquity is
so helpful. Gene clustering can be analysed using the STRING,
SEED and MicrobesOnline databases, among others.

Phylogenetic occurrence profiles

Another very useful type of association is phylogenetic co-
occurrence, whose underlying principles are that enzymes of the
same pathway will be either all present in or all absent from a
given organism [23,41] and that genes that functionally replace
each other will have reciprocal (anticorrelated) distributions [51].
The presence/absence patterns of genes among genomes can
often identify candidates for ‘missing’ genes [52] such as those
encoding orphan enzymes, or link unknown genes to known
pathways. Phylogenetic profiles can be analysed using STRING,
PHYDBAC, MBGD, the Signature Genes tool at NMPDR and
the Phylogenetic Profiler at JGI. The two latter tools are designed
to detect genes whose occurrence is correlated or anticorrelated
among user-specified sets of organisms.

Gene fusions

In a gene-fusion event, separate parent gene products are encoded
in a single multifunctional polypeptide. Such fusions, which have
been called ‘Rosetta stone’ proteins, suggest a high probability of
functional interaction between the two proteins, e.g. as enzymes
in the same pathway or as components of a protein complex
[53,54]. Just as with gene clustering, if the function of one of
the fused genes is known and the other is not, the fusion allows
strong functional predictions. Prokaryotic gene-fusion events are
catalogued in the FusionDB database.

Shared regulatory sites

Genes participating in the same pathway or process are often
regulated by a common protein recognizing a specific DNA
sequence, or by common riboswitches [55,56]. Finding shared
regulatory sites is thus a powerful way to find genes that
are functionally linked. Gene regulation databases include
SwissRegulon and PRODORIC.

Metabolic reconstruction

Metabolic reconstruction is both a goal and a method; the quest to
reconstruct an organism’s full metabolic repertoire in silico itself
helps discover and rationalize that repertoire. Thus reconstructing
a complete functional pathway from the set of genes in a
genome using reference biochemical knowledge, as pioneered by
E. Selkov, is of great value in inferring function from various kinds
of genomic data because it imposes consistency [57,58]. The com-
pleteness of the reconstructed pathway indicates the correctness of
initial gene function assignments and establishes which pathway
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Figure 2 Types of associations in comparative genomics

Multiple types of evidence gathered from genomic and post-genomic resources are integrated in order to make predictions on gene function. The more lines of evidence converge, the more robust
predictions become.

steps are not yet connected to a gene. Metabolic reconstruction
is most effective when applied iteratively; problems of wrong
functional assignments and missing genes become apparent, and
are resolved, in successive cycles [59]. One way to implement
metabolic reconstruction is via a ‘subsystems’ approach, in which
a metabolic pathway (a ‘subsystem’) is analysed by experts
across a large collection of genomes in parallel [60,61]. This
approach is particularly helpful in identifying and making sense
of pathway variants (e.g. truncated pathways or non-orthologous
displacements). Another, more widespread, approach is genome-
wide metabolic reconstruction and modelling, which has a wider
scope of metabolism coverage but is essentially focused on
a single organism. It can nonetheless reveal pathway gaps or
inconsistencies that may otherwise be missed [12,58].

Associations based on post-genomic resources

As well as genomes themselves, various kinds of functional
genomic data can yield functional associations between proteins.
Although such post-genomic data are often still too noisy to be
used as primary sources, they can be very effectively combined
with genomics-based data.

Gene expression profiles

Associations can be derived from co-expression datasets (from
microarrays), which are now well developed for model bacteria

as well as for plants and animals (e.g. [62–64]). Moreover,
the sets of conditions and (for plants and animals) the site or
developmental stage in which a gene is expressed can provide vital
clues about function [43]. Microarray databases and tools include
MicrobesOnline and GenExpDB for bacteria, and ATTED and
the Golm Transcriptome Database for Arabidopsis.

Proteomics data

At the protein level, protein–protein interaction datasets (e.g.
[65]) [from two-hybrid or TAP (tandem affinity purification) tag
experiments] have analogous value to those from microarrays.
Also, for plants or other eukaryotes, organellar proteome data can
sometimes rule in or rule out a possible function, for instance in
the case of an enzyme of a pathway whose organellar location
is known [43]. Protein–protein interaction databases include DIP,
APID and (for E. coli) eNet. Plant proteome databases are PPDB
and SUBA II.

Essentiality and other phenotype data

The availability of large-scale bacterial and plant knockout
collections, along with databases on knockout phenotypes, can
quickly show whether a gene is essential or is associated with
a particular phenotype [66–68]. Besides revealing associations
directly (e.g. when auxotrophy connects a gene with a biosynthetic
pathway) phenotype data, especially essentiality data, pinpoint
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important genes. Essentiality data for bacteria are integrated into
the SEED database; plant phenome databases include RAPID,
SeedGenes and Chloroplast2010.

Three-dimensional structures

Structural genomics projects have determined the structures of
hundreds of proteins of unknown function, many of which
are ubiquitous [69]. Although structural genomics is usually
unable to assign a specific function to a target protein, three-
dimensional structures help, via fold recognition, to establish
long-range homology when this is obscured at the sequence
level, and thus contribute to general class functional assignments.
Furthermore, a structure can be very helpful for comparative
genomics because the ligands that the protein is computationally
predicted to bind (e.g. [70]) can be compared with possible
substrates inferred from, e.g., gene clustering evidence. Protein
structures are compiled in the Protein Data Bank. If no structure
is available, structure prediction algorithms such as PHYRE and
PSIPRED GenTHREADER can be useful substitutes.

The genome deluge

A total of over 1000 prokaryotic and eukaryotic genomes have
now been completely sequenced, approx. 4000 more are in the
pipeline (Figure 3A), and the pace continues to quicken [71]. This
progress is highly favourable for comparative genomics, because
a crucial feature of comparative genomics associations is that the
number that can be found grows roughly at the square of the num-
ber of genomes [45], as shown schematically in the inset
of Figure 3(A). The power of comparative genomics to
identify functional associations between genes will thus keep
growing rapidly. Moreover, since post-genomic datasets are also
expanding rapidly, and analysing multiple types of associations
improves predictions [41,44,45], the specificity and robustness
of predictions will also keep growing. This means that many
functions that are elusive today will become predictable in the
foreseeable future.

SYNERGY OF PROKARYOTE–EUKARYOTE INTEGRATIONS

Of the genomes completed so far, approx. 10% come from
a diverse set of eukaryotes in which all major groups are
represented (Figure 3B); the percentage of eukaryotes among
ongoing genomes is similar and their absolute number is almost
4-fold higher (Figure 3C) [71]. These eukaryotic genomes, which
already collectively encode some 1.8×106 ORFs (open reading
frames), can now or soon will be included in comparative
genomics analyses. Such inclusion is very valuable because
analysing prokaryotic and eukaryotic genomes together yields
information that cannot be obtained by looking at either group
alone, and many discoveries have now been made this way. This
section illustrates the synergy using three historical examples
involving metabolic pathways of engineering interest, i.e. folate
synthesis, NAD synthesis and leucine degradation, plus a case
study showing how much faster an engineering target enzyme can
be found with comparative genomics than without it.

Example 1: a missing folate biosynthesis enzyme

The folate biosynthesis pathway is an attractive engineering
target in bacteria [72,73] and plants [74]. Although the other
pathway genes had been identified, until recently the gene for
one enzyme (dihydroneopterin triphosphate pyrophosphatase)
was missing in both groups (Figure 4A). This enzyme can be

Figure 3 The genome deluge and its implications

Statistics are from the Genomes OnLine Database (http://genomesonline.org/index2.htm).
(A) Progress in genome sequencing since 1997. The inset plots the square of the number of
completely sequenced genomes against time; this value is roughly proportional to the potential
for recognizing functional associations from genome data. Note its explosive growth since
about 2006. The incomplete genomes include several hundred comprehensive EST (expressed
sequence tag) projects. (B) Taxonomic breakdown of the 1067 genomes completed by August
2009. (C) Taxonomic breakdown of 3446 full genome sequencing projects that were ongoing
(incomplete) as of August 2009. EST and genome survey projects are excluded from the
total.

viewed as mediating the committing step in folate biosynthesis
since its substrate, dihydroneopterin triphosphate, has three
other known fates in various organisms (Figure 4A). Partial
purification and characterization of dihydroneopterin triphosphate
pyrophosphatase from E. coli had shown that it is a small (17 kDa)
protein that requires Mg2+ for activity and is optimally active at
pH 8.5 [75]. Comparative genomics analysis (Figure 4B) revealed
a gene (ylgG) encoding a small protein belonging to the Nudix
family embedded in a folate synthesis operon in Lactococcus
lactis and other bacteria. This made YlgG a prime candidate for
the missing enzyme as Nudix family members include nucleoside
triphosphate pyrophosphatases (dihydroneopterin triphosphate is
structurally analogous to a nucleoside triphosphate) and Nudix
enzymes characteristically require a bivalent cation and have an
alkaline pH optimum. Experimental tests showed that inactivating
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Figure 4 FolQ, a missing folate synthesis enzyme in bacteria and plants

(A) The tetrahydrofolate biosynthesis pathway and its branches leading to queuosine and
pterins. Note that the previously missing enzyme FolQ (YlgG in Lactococcus lactis) is
the first step unique to the folate pathway. Abbreviations: BH4, 5,6,7,8-tetrahydrobiopterin;
CPH4, 6-carboxy-5,6,7,8-tetrahydropterin; DHF, 7,8-dihydrofolate; DHM, 7,8-dihydromonap-
terin; DHN, 7,8-dihydroneopterin; DHP, 7,8-dihydropteroate; Glu, glutamate; HMDHP,
6-hydroxymethyl-7,8-dihydropterin; MH4, 5,6,7,8-tetrahydromonapterin; -P, phosphate; -P2,
pyrophosphate; -P3, triphosphate; pABA, p-aminobenzoate; P-ase, non-specific phosphatase;
PTP, 6-pyruvoyl-5,6,7,8-tetrahydropterin; Que, queuosine; THF, 5,6,7,8-tetrahydrofolate;
THF-Glun, tetrahydrofolate polyglutamates. (B) Clustering in operonic arrangements of folQ
with genes encoding other folate synthesis enzymes in two lactobacteria (phylum Firmicutes)
and Leptotrichia buccalis (phylum Fusobacteria). Arrows indicate transcriptional direction;
overlapping arrows indicate translational coupling. Genes are colour-coded in agreement with
(A); non-conserved genes are coloured grey. A short intervening block of six genes separates
the two clusters of folate synthesis genes in L. buccalis. The rose highlight linking the bacterial
folQ genes and the vertical triangle represent the projection of the bacterial gene function to
plants.

ylgG in L. lactis resulted in dihydroneopterin triphosphate
accumulation and folate depletion, and that recombinant YlgG
had high dihydroneopterin triphosphate pyrophosphatase activity;
ylgG was consequently renamed folQ [76]. The equivalent E. coli
gene (nudB) was identified 2 years later via a classical strategy
involving cloning and characterizing all 13 E. coli Nudix proteins
[77], which demanded notably more effort than the comparative
genomics approach. Lastly, having identified the L. lactis enzyme,
it was possible to show that its closest homologue in Arabidopsis
also had high dihydroneopterin triphosphate pyrophosphatase
activity (Figure 4B) [76].

Example 2: the tryptophan to quinolinate route in NAD synthesis

Manipulating levels of NAD and related cofactors, i.e.
NAD(P)(H), is a useful tool for metabolic engineering [78,79].

Figure 5 A tryptophan to quinolinate pathway in bacteria

(A) The two biosynthetic routes to quinolinate: the five-step ‘eukaryotic’ route and the two-step
‘prokaryotic’ one. ACM semialdehyde, 2-amino-3-carboxymuconate semialdehyde. Conversion
of ACM semialdehyde into quinolinate (asterisked) is non-enzymatic. (B) Schematic profile of the
presence and absence of the seven genes of the ‘eukaryotic’ and ‘prokaryotic’ pathways among two
representative eukaryotes, two representative bacteria with the ‘prokaryotic’ pathway (Escherichia
coli and Bacillus subtilis), and three bacteria with the ‘eukaryotic’ pathway (Polaribacter
filamentus, Gemmata sp., and Xanthomonas axonopodis). +, gene present; -, gene absent.
(C) Clustering in operonic arrangements of various ‘eukaryotic’ pathway genes in representative
bacteria. Arrows indicate transcriptional direction. Non-conserved genes are coloured grey.

Such engineering requires knowledge of the NAD biosynthesis
pathway genes, to which comparative genomics has contributed
significantly for the early pathway steps leading to quinolinate,
the universal de novo precursor of the pyridine ring of NAD
[80,81]. Before the advent of comparative genomics, two
different pathways to quinolinate were known: the two-en-
zyme ‘prokaryotic’ pathway from aspartate and the five-enzyme
‘eukaryotic’ route from tryptophan (Figure 5A). However, in
certain bacteria, classical radiotracer studies had demonstrated
14C incorporation from tryptophan into NAD and some of
the ‘eukaryotic’ pathway enzyme activities had been detected,
pointing to the existence of an alternative pathway in these
organisms. Comparative genomics analysis identified candidates
for all five bacterial genes of this pathway, all of which were
then validated by complementation and biochemical assays [80].
The most crucial observations leading to identification of the
genes for the alternative pathway were the absence from some
genomes of genes encoding both enzymes (NadA and NadB)
of the ‘prokaryotic’ pathway (Figure 5B) and the presence of
various operon-like gene clusters containing homologues of four
out of the five ‘eukaryotic’ pathway enzymes (Figure 5C). The
one missing enzyme, KFA (N-formylkynurenine formamidase),
of the bacterial pathway (which is non-orthologous to eukaryotic
KFA) was correctly predicted from its tendency to cluster with
the other four (Figure 5C).
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Unknown proteins and orphan enzymes 7

Figure 6 Leucine catabolism in bacteria and humans

(A) Enzymatic steps involved in the later steps of leucine catabolism and the metabolism of hydroxymethylglutaryl-CoA (HMG-CoA). Intermediates are shown by chemical names. Enzymes
conserved in humans, Bacillus subtilis and certain other bacteria are as follows: IVD, isovaleryl-CoA dehydrogenase (EC 1.3.99.10); MCCC, methylcrotonoyl-CoA carboxylase (EC 6.4.1.4) [2a/2c,
biotin-carboxylase subunit/biotin carboxyl carrier domain/subunit; 2b, carboxyl transferase subunit]; MGCH, methylglutaconyl-CoA hydratase (EC 4.2.1.18); HMGCL, hydroxymethylglutaryl-CoA
lyase (EC 4.1.3.4); and AACS, acetoacetate-CoA synthetase (EC 6.2.1.16). These five enzymes are colour-coded. Two enzymes related to the mevalonate pathway of isoprenoid/sterol biosynthesis
(present in humans, but not B. subtilis) are shown in grey: HMGCS, HMG-CoA synthase (EC 2.3.3.10); and HMGCR, HMG-CoA reductase (EC 1.1.1.34). Enzymes catalysing early steps of leucine
catabolism (from leucine to isovaleryl-CoA) are similar in humans and bacteria (not shown). (B) Projection of functional assignments between human and bacterial genes. Gene names (human and
B. subtilis) corresponding to pathway enzymes are colour-coded and numbered in agreement with (A). The reasoning used in analysing leucine catabolism in bacteria is illustrated by arrowheads
pointing in the direction of functional projections. Vertical triangles with red lettering correspond to unambiguous projections based on orthology (same specific function). The triangles point in the
direction of the projection. Vertical triangles with black lettering indicate homologues that belong to large families that contain multiple paralogues that share a ‘general class’ function, but differ in
substrate specificity. Horizontal triangles indicate conjectures based on gene clustering (refinement of ‘general class’ functions and genuine functional predictions). (C) Large operon-like clusters of
genes related to leucine catabolism detected in a number of Gram-positive and Gram-negative bacteria. Conserved homologous genes are colour-coded and numbered in agreement with (A) and
(B). Genes without homologues in a given chromosomal neighbourhood are coloured grey.

Example 3: the leucine-degradation pathway

Leucine degradation yields acetyl-CoA and acetoacetate, which
are important intermediates in primary and secondary metabolism
[82], including the synthesis of hydroxymethylglutaryl-CoA
and thence isoprenoids and sterols (Figure 6A). The leucine
degradation pathway has been well studied in humans and all
of the human genes are elucidated and characterized (Figure 6B).
In contrast, before comparative genomics work, relatively little
was known about this pathway in bacteria, and no bacterial genes
had been connected directly to steps after isovaleryl-CoA.

Attempts to identify bacterial genes solely by homology of
their products with those of eukaryotic genes produced ambiguous
results since most leucine-degradation enzymes belong to large
families of paralogues. Such paralogues usually retain a ‘general
class’ function (e.g. ‘dehydrogenase’), but differ widely in
substrate specificity. However, a comparative genomics approach
(outlined in Figure 6B) provided convincing evidence for the
presence of the entire pathway of leucine catabolism in a number
of diverse bacteria [59]. The first step was identification of
a conserved gene cluster containing the bacterial orthologues
(genes 2b and 4) of two of the human genes (Figure 6C). This

observation enabled upgrading functional predictions for two
additional bacterial genes in the same cluster (genes 1 and 2a)
from a general class to a specific function. At the time that
this analysis was performed, no methylglutaconyl-CoA hydratase
gene had been identified in any organism. Another conserved
bacterial gene in the cluster (gene 3), a member of the enoyl-
CoA hydratase family, was predicted to fulfil this functional
role, and this prediction was projected to the orthologous gene
in the human genome. The prediction for the human gene has
since been verified experimentally [83,84], nicely illustrating
‘two-way comparative genomics traffic’ between prokaryotes and
eukaryotes.

Another functional inference concerns the last conserved
member of the same cluster (gene 5) (Figure 6C). Its assignment
as acetoacetyl-CoA synthetase is supported by homology with
other acyl-CoA synthetases and by clustering with the leucine-
catabolism pathway where acetoacetate is a final product. The
gene cluster in Bacillus halodurans contains two paralogous
forms (genes 5 and 5′), whereas each of the very similar clusters
in Bacillus anthracis and Bacillus subtilis has either one or
the other, suggesting that they are isofunctional. Traditionally,
acetoacetyl-CoA synthetase has not been considered to be closely
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Figure 7 A hypothetical shortcut to the plant choline-oxidizing enzyme

(A) The choline to glycine betaine pathway in bacteria and plants, and related reactions of choline metabolism in bacteria. BetA, choline dehydrogenase (EC 1.1.99.1); BetB, betaine aldehyde
dehydrogenase (EC 1.2.1.8); BetC, choline sulfatase (EC 3.1.6.6); Bmt, betaine–homocysteine S-methyltransferase (EC 2.1.1.5); CMO, choline mono-oxygenase (EC 1.14.15.7), a Rieske-type
[2Fe–2S] protein; DMGO, dimethylglycine oxidase (EC 1.5.3.10); Fd, ferredoxin; FNR, ferredoxin–NADP+ reductase (EC 1.18.1.2); GlyA, serine hydroxymethyltransferase (EC 2.1.2.1); MSOX,
monomeric sarcosine oxidase; MttB, homologue of trimethylamine methyltransferase often clustered with dimethylglycine oxidase; TSOX, heterotetrameric sarcosine oxidase. Other bacterial enzymes
(not shown) that mediate oxidation of choline to betaine aldehyde are choline oxidase (EC 1.1.3.17) and GbsB, a soluble, NAD-linked type III alcohol dehydrogenase. (B) Typical clustering
arrangements of the choline–glycine betaine pathway genes betA and betB with betI (encoding a transcriptional repressor) and betT (encoding a choline transporter) or betC. Genes are colour-coded
in agreement with (A). (C) Clustering in diverse bacteria of genes for Rieske-type proteins homologous with choline mono-oxygenase with up to 13 different genes of choline metabolism. Genes are
colour-coded in agreement with (A) and (B). The rose highlight linking the bacterial Rieske-type genes and the vertical triangle represent the projection of the hypothetical bacterial gene function
(choline oxidation) to plant choline mono-oxygenases. The gene labelled opuAC encodes a homologue of the periplasmic choline-binding component of an ABC (ATP-binding cassette) transporter.
The genes labelled α, β , γ and δ encode the four subunits of heterotetrameric sarcosine oxidase. Non-conserved genes are coloured grey.

tied to leucine catabolism, but the gene clustering evidence
strongly suggests that this is so, at least in some bacteria.

Case study: identifying the plant choline-oxidizing enzyme

The two-step pathway from choline to glycine betaine (Figure 7A)
has long been a target for metabolic engineering of resistance
to salinity and water deficit in bacteria and plants because
glycine betaine is a potent osmoprotectant [85,86]. The genes
for the E. coli pathway had been cloned and sequenced by 1991
[87]: betA, encoding a membrane-bound FAD-containing choline
dehydrogenase, and betB, encoding a soluble NAD-linked betaine
aldehyde dehydrogenase. In E. coli, these genes are clustered
with betT , specifying a choline transporter and betI, coding for
a transcriptional repressor (Figure 7B) [87]. Identical or similar
choline oxidation pathways and gene clusters occur in many other
bacteria [88]; these clusters can also include betC, coding for
choline sulfatase (Figure 7B) or choline transporter genes other
than betT (e.g. opuAC).

Investigation of the plant pathway showed that it is plastid-
localized, that the second enzyme is a betaine aldehyde
dehydrogenase as in bacteria [89], and that the first is not
a dehydrogenase, but a ferredoxin-dependent choline mono-
oxygenase [90,91]. The ferredoxin electron donor can be

reduced photosynthetically or by ferredoxin–NADP reductase
plus NADPH in darkness [91]. The plant choline-oxidizing
system thus comprises three proteins: choline mono-oxygenase,
ferredoxin and ferredoxin-NADP reductase (Figure 7A). Cloning
and characterization of choline mono-oxygenase showed it to be
a Rieske-type [2Fe–2S] enzyme [92,93]. Rieske-type oxygenases
with reductase and ferredoxin components were already well
known in bacteria [94], but choline mono-oxygenase was the
first such case from plants.

After discovery of choline mono-oxygenase activity in 1989
[91], it took 8 years to identify the gene: 6 years to purify the
protein [92] and 2 more to clone the cDNA from peptide sequence
data [93]. But had it been possible to apply comparative genomics
to the search for the plant choline mono-oxygenase gene, it could,
as we now explain, have been identified in approx. 2 h using the
SEED database and its tools.

The starting point for our retrospective analysis is the sequence
of plant betaine aldehyde dehydrogenase, which appeared in
1990 [89]. This protein has many strong homologues in bacteria,
first among them being betB proteins, whose genes cluster
with betA and other bet genes (Figure 7B). However, certain
of these homologues are encoded by genes in a different sort of
cluster. This sort contains a gene for a Rieske-type protein
as well as various other genes of choline and glycine betaine
metabolism, including betC and dimethylglycine and sarcosine
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oxidases (Figure 7C). A gene specifying a reductase–ferredoxin
fusion protein to service the Rieske-type protein is sometimes
present, as is a betA gene (Figure 7C). These clusters strongly
implicate the Rieske-type protein in choline metabolism, most
probably as a choline oxygenase. (The co-occurrence of the
Rieske-type gene with betA is not inconsistent with this inference
because these enzymes could be alternatives. They have opposite
cofactor requirements: an electron donor for choline mono-
oxygenase compared with an electron acceptor for BetA, and
choline mono-oxygenase has an oxygen requirement which BetA
does not.) When the Rieske-type protein from clusters such as
those in Figure 7C is used to search plant genomes, the only
BlastP hits are choline mono-oxygenases.

The inference that the bacterial Rieske-type proteins are choline
mono-oxygenases awaits experimental validation, but this makes
no difference to the chain of reasoning. This chain would be
quite strong enough to warrant experimental tests of the plant
homologues were their function unknown.

CONCLUSION

In the present review, we have sought to convince biochemists
that the unknown protein problem is vast, and that comparative
genomics can help to solve it, especially when prokaryote and
eukaryote genomes are analysed together. Although comparative
genomics approaches are being adopted by more and more
researchers, they remain underutilized. Given how fast the
power of these approaches is increasing, and will continue to
increase (Figure 3A), this underutilization means the loss of
many opportunities and even, as the choline mono-oxygenase
case suggests, significant waste of time and effort (“8 years in the
lab can save 2 hours at the computer”).

Barriers to the adoption of comparative genomics have been
noted briefly elsewhere [43], but they bear additional comment
here. First, there is a perception that the necessary bioinformatic
skills are specialist ones. This is not the case; powerful but fairly
intuitive websites such as STRING and SEED (Table 1) now bring
comparative genomics tools within the reach of any experiment-
alist after a few hours of instruction. Another perception is that a
prerequisite for comparative genomics is high-level literacy in the
metabolism, physiology, ecology and systematics of a wide range
of prokaryotes and eukaryotes. This barrier is minimal; online
databases now make all the necessary background knowledge
just a few mouse-clicks away, so it can easily be acquired ‘on
the fly’. Lastly, solving the unknown protein problem can seem
daunting. But, as noted at the outset, it can be achieved by a
sustained community effort. In practice, such an effort will require
sharing of unpublished ideas, predictions and observations in a
co-ordinated fashion [35]. Although this requires some change
of mindset away from the classical ‘single-PI specialist’ model,
this is not a utopian dream, because adopting the new mindset
requires only enlightened self-interest: researchers rapidly realize
that much more progress can be made with it than without it.
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5 Kunze, R., Frommer, W. B. and Flügge, U. I. (2002) Metabolic engineering of plants: the
role of membrane transport. Metab. Eng. 4, 57–66

6 Yazaki, K. (2005) Transporters of secondary metabolites. Curr. Opin. Plant Biol. 8,
301–307

7 Stepansky, A., Less, H., Angelovici, R., Aharon, R., Zhu, X. and Galili, G. (2006) Lysine
catabolism, an effective versatile regulator of lysine level in plants. Amino Acids 30,
121–125

8 Galperin, M. Y. and Koonin, E. V. (2004) ‘Conserved hypothetical’ proteins: prioritization
of targets for experimental study. Nucleic Acids Res. 32, 5452–5463

9 Karp, P. D. (2004) Call for an enzyme genomics initiative. Genome Biol. 5, 401
10 Koonin, E. V. and Galperin, M. Y. (2002) Sequence – Evolution – Function:

Computational Approaches in Comparative Genomics, Kluwer, Dordrecht
11 Durot, M., Bourguignon, P. Y. and Schachter, V. (2009) Genome-scale models of bacterial

metabolism: reconstruction and applications. FEMS Microbiol. Rev. 33, 164–190
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79 Heuser, F., Schroer, K., Lütz, S., Bringer-Meyer, S. and Sahm, H. (2007) Enhancement of
the NAD(P)(H) pool in Escherichia coli for biotransformation. Eng. Life Sci. 7, 343–353

80 Kurnasov, O., Goral, V., Colabroy, K., Gerdes, S., Anantha, S., Osterman, A. and
Begley, T. P. (2003) NAD biosynthesis: identification of the tryptophan to quinolinate
pathway in bacteria. Chem. Biol. 10, 1195–1204

81 Lima, W. C., Varani, A. M. and Menck, C. F. (2009) NAD biosynthesis evolution in
bacteria: lateral gene transfer of kynurenine pathway in Xanthomonadales and
Flavobacteriales. Mol. Biol. Evol. 26, 399–406

82 Khannapho, C., Zhao, H., Bonde, B. K., Kierzek, A. M., Avignone-Rossa, C. A. and
Bushell, M. E. (2008) Selection of objective function in genome scale flux balance
analysis for process feed development in antibiotic production. Metab. Eng. 10, 227–233

83 IJlst, L., Loupatty, F. J., Ruiter, J. P., Duran, M., Lehnert, W. and Wanders, R. J. (2002)
3-Methylglutaconic aciduria type I is caused by mutations in AUH. Am. J. Hum. Genet.
71, 1463–1466

84 Ly, T. B., Peters, V., Gibson, K. M., Liesert, M., Buckel, W., Wilcken, B., Carpenter, K.,
Ensenauer, R., Hoffmann, G. F., Mack, M. and Zschocke, J. (2003) Mutations in the AUH
gene cause 3-methylglutaconic aciduria type I. Hum. Mutat. 21, 401–407

85 Le Rudulier, D., Strom, A. R., Dandekar, A. M., Smith, L. T. and Valentine, R. C. (1984)
Molecular biology of osmoregulation. Science 224, 1064–1068

86 McCue, K. F. and Hanson, A. D. (1990) Drought and salt tolerance: towards
understanding and application. Trends Biotechnol. 8, 358–362

c© The Authors Journal compilation c© 2010 Biochemical Society



Unknown proteins and orphan enzymes 11

87 Lamark, T., Kaasen, I., Eshoo, M. W., Falkenberg, P., McDougall, J. and Strøm, A. R.
(1991) DNA sequence and analysis of the bet genes encoding the osmoregulatory
choline–glycine betaine pathway of Escherichia coli. Mol. Microbiol. 5,
1049–1064

88 Kempf, B. and Bremer, E. (1998) Uptake and synthesis of compatible solutes as microbial
stress responses to high-osmolality environments. Arch. Microbiol. 170,
319–330

89 Weretilnyk, E. A. and Hanson, A. D. (1990) Molecular cloning of a plant betaine–aldehyde
dehydrogenase, an enzyme implicated in adaptation to salinity and drought. Proc. Natl.
Acad. Sci. U.S.A. 87, 2745–2749

90 Lerma, C., Hanson, A. D. and Rhodes, D. (1988) Oxygen-18 and deuterium labeling
studies of choline oxidation by spinach and sugar beet. Plant Physiol. 88,
695–702

91 Brouquisse, R., Weigel, P., Rhodes, D., Yocum, C. F. and Hanson, A. D. (1989) Evidence
for a ferredoxin-dependent choline monooxygenase from spinach chloroplast stroma.
Plant Physiol. 90, 322–329

92 Burnet, M., Lafontaine, P. J. and Hanson, A. D. (1995) Assay, purification, and partial
characterization of choline monooxygenase from spinach. Plant Physiol. 108,
581–588

93 Rathinasabapathi, B., Burnet, M., Russell, B. L., Gage, D. A., Liao, P. C., Nye, G. J.,
Scott, P., Golbeck, J. H. and Hanson, A. D. (1997) Choline monooxygenase, an unusual
iron–sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants:
prosthetic group characterization and cDNA cloning. Proc. Natl. Acad. Sci. U.S.A. 94,
3454–3458

94 Mason, J. R. and Cammack, R. (1992) The electron-transport proteins of hydroxylating
bacterial dioxygenases. Annu. Rev. Microbiol. 46, 277–305

Received 25 August 2009; accepted 15 September 2009
Published on the Internet 14 December 2009, doi:10.1042/BJ20091328

c© The Authors Journal compilation c© 2010 Biochemical Society


