
Phagocytosis and conidiocidal assays
Alveolar macrophages were exposed to conidia at a macrophage:conidia ratio of 1:5 for
2 h, and 10:1 for 4 h, in the absence or presence of 20 mg ml21 Ptx3 (0.44 £ 1026 M Ptx3
protomer) before being evaluated for internalization or conidiocidal activity, respectively
(Supplementary Information).
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Annotated genome sequences1,2 can be used to reconstruct whole-
cell metabolic networks3–6. These metabolic networks can be
modelled and analysed (computed) to study complex biological
functions7–11. In particular, constraints-based in silico models12

have been used to calculate optimal growth rates on common
carbon substrates, and the results were found to be consistent
with experimental data under many but not all conditions13,14.
Optimal biological functions are acquired through an evolution-
ary process. Thus, incorrect predictions of in silico models based
on optimal performance criteria may be due to incomplete
adaptive evolution under the conditions examined. Escherichia
coli K-12 MG1655 grows sub-optimally on glycerol as the sole
carbon source. Here we show that when placed under growth
selection pressure, the growth rate of E. coli on glycerol repro-
ducibly evolved over 40 days, or about 700 generations, from a
sub-optimal value to the optimal growth rate predicted from a
whole-cell in silico model. These results open the possibility of
using adaptive evolution of entire metabolic networks to realize
metabolic states that have been determined a priori based on in
silico analysis.

Predictive whole-cell metabolic models can be developed using a
constraints-based modelling procedure15–18. As an alternative to
detailed theory-based models, constraints-based models use the
successive imposition of governing constraints (such as mass con-
servation, thermodynamics, capacity and nutritional environment)
to eliminate network functions that exceed the governing con-
straints. Mathematically this procedure defines a solution space
containing all possible metabolic network functions that satisfy the
governing constraints. Each particular solution in this space corre-
sponds to a particular state of the metabolic network and therefore a
potential behaviour of the cell. Within the solution space defined by
the governing constraints, the optimal use of the metabolic network
to support growth can be found among all possible solutions using
linear optimization16–19. However, a single optimal growth con-
dition is of limited interest and a phenotype phase plane (PPP)
analysis has been developed to obtain a broad understanding of a
metabolic network’s optimal properties20,21. The PPP analysis evalu-
ates the optimal properties of a metabolic network under a range of
environmental conditions (see Methods) and has been used to show
that the growth of E. coli is consistent with the optimal use of its
metabolic network under several defined growth conditions12–14.

It is not known whether optimal growth is observed on all
substrates, and if not, whether adaptive evolution towards optimal
growth can be achieved. Furthermore, if such adaptive evolution
towards the optimal behaviour occurs, does the endpoint corre-
spond with a priori calculations? To address these issues, we
examined prolonged exponential growth of E. coli K-12 on several
substrates (acetate, succinate, malate, glucose and glycerol). All
calculations presented here were made with a previously formulated
large-scale E. coli metabolic model12,14, and the model was not
adjusted or ‘fitted’ to the data described.

Batch growth experiments were done using malate as the sole

letters to nature

NATURE | VOL 420 | 14 NOVEMBER 2002 | www.nature.com/nature186 © 2002        Nature  Publishing Group



carbon source with a range of substrate concentrations (0.25–
3 g l21) and temperatures (29–37 8C) to vary the malate uptake
rate (MUR). The MUR, oxygen uptake rate (OUR) and growth rate
were measured. The measured MUR and OUR data were optimal, as
defined by the line of optimality (LO) in the PPP (Fig. 1a). The
optimal growth rate of E. coli was calculated for all combinations of
the MUR and OUR and displayed as a surface over the PPP (Fig. 1b).
The experimentally determined growth rates were on the edge of the
colour-coded solution space that corresponds to the LO (Fig. 1b).
Hence the optimal growth performance of E. coli K-12 on malate
was predicted a priori by using PPP. The results for growth with
malate as the sole carbon source were in agreement with previous
observations of E. coli metabolism for growth on succinate or
acetate14.

A natural question arises: is the optimal performance on malate
stable over prolonged periods of time? To address this question,
adaptive evolution of E. coli on malate was studied for 500
generations. The adaptation resulted in a 19% increase in growth
rate. However, the MUR and OUR also increased and maintained
metabolic operation on the LO (Fig. 1). Similar adaptive evolution
experiments on acetate and succinate resulted in an increased
growth rate (20% and 17%, respectively) (Fig. 2). Both the oxygen
and substrate uptake rates increased concomitantly to maintain
optimal growth as defined and predicted by the PPP analysis.

The growth rate of E. coli using glucose as the carbon source was
also increased by prolonged exponential growth (Figs 2 and 3).
Before adaptive evolution on glucose the cellular growth rate, OUR,
and glucose uptake rate (GUR) were experimentally determined
over a range of glucose concentrations and temperatures. The
experimentally determined values for the GUR and OUR corre-
sponded to points on the LO or slightly in phase 2 (the acetate
overflow region) of the PPP (ref. 21) (Fig. 3a). The predicted acetate
secretion in phase 2 was experimentally observed and the measured
growth rates were on the surface of the solution space near the edge
corresponding to the LO (data not shown). E. coli was subsequently
kept in sustained exponential growth over 500 generations (Fig. 3b,
c). The growth rate increased by 17%, as shown by movement of the
experimental data points within phase 2 on the surface towards
higher growth rates. Thus, as with malate, succinate and acetate, the
growth rate of E. coli with glucose as the carbon source could be
slightly increased with the substrate and oxygen uptake rates
moving in phase 2 with some acetate overflow. It was also noted
that evolutionary adaptation maintained metabolic operation on
the surface of the three-dimensional PPP, as predicted by the
physicochemical constraints on the metabolic network. The meta-
bolic operation in the phase 2 provided an increased growth rate

with a reduced yield (relative to the LO).
We determined the growth performance over a range of glycerol

concentrations and temperature. Unlike growth on malate or
glucose, the experimental data points were scattered throughout
phase 1 far from the LO (Fig. 4b), indicating sub-optimal growth of

Figure 2 Growth rate during adaptive evolution on glucose, malate, succinate and

acetate. Growth conditions were kept constant at a temperature of 37 8C and a substrate

concentration of 2 g l21. We measured growth rate in the exponential phase of growth.

The increases in growth rate over time were as follows: glucose (18%), malate (21%),

succinate (17%) and acetate (20%). The number of generations for each adaptive

evolution was: glucose (500), malate (500), succinate (1,000) and acetate (700).

Figure 1 Growth of E. coli K-12 on malate. a, The malate–oxygen phenotype phase plane

(PPP) Phase 1 is characterized by metabolic futile cycles, whereas phase 2 is

characterized by acetate overflow metabolism. The line of optimality (LO, in red) separates

phases 1 and 2 (ref. 21.) Data points (open circles) represent malate concentrations

ranging from 0.25–3 g l21; and temperatures ranging from 29–37 8C. The two data

points in blue represent the starting point (day 0) and endpoint (day 30) of adaptive

evolution respectively, at a malate concentration of 2 g l21 and a temperature of 37 8C.

These data points represent a span of 500 generations. b, Three-dimensional

representation of growth rates. The x and y axes represent the same variables as in a. The

z axis represents the cellular growth rate (h21). OUR, oxygen uptake rate; MUR, malate

uptake rate.
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wild-type E. coli K-12 on glycerol, consistent with previous obser-
vations22.

We studied E. coli adaptive growth using glycerol as the sole
carbon source (2 g l21), by serial transfer, at a temperature of 30 8C,
and with sufficient oxygenation. Growth rate, glycerol uptake rate
(G1-UR) and OUR were measured every ten days. Over a 40-day
period an evolutionary path (E1) was observed (Fig. 4c). Pheno-
typic changes were traced in phase 1, eventually converging towards
the LO. During this 40-day period, the growth rate more than
doubled from 0.23 h21 to 0.55 h21 (Fig. 4a). The substrate uptake
and growth rate data obtained under various growth conditions
after adaptive evolution were near the LO (Fig. 4d). The evolved
strain attained near-optimal growth on glycerol as defined by the
in silico predictions. A second, independent adaptation experiment
gave a similar but non-identical evolutionary trajectory (E2),
converging near the same endpoint (Fig. 4c). Finally, a third
independent adaptation experiment (E3) was done with a different
initial starting point within phase 1. E3 was done at 37 8C and a
glycerol concentration of 2 g l21. The adaptation of E. coli to growth

on glycerol at 37 8C resulted in motion towards the LO and the
growth rate increased by about 30% (Fig. 4a). The final growth rate
of the E3 strain was consistent with the in silico predictions with
respect to the G1-UR, OUR and the growth rate.

To assess the stability of the endpoint of the adaptive evolution,
we extended the cultivation on glycerol for an additional 300
generations, or 20 days for the E1 and E2 strains. The data indicated
no further change in growth (Fig. 4a). On the sixtieth day of the
experiment the E1 and E2 strains exhibited growth on the LO under
various growth conditions, reaffirming optimal growth behaviour
and the stability of the phenotype (Fig. 4e).

Figure 4 Growth of E. coli K-12 on glycerol. a, Change in growth rate with time for three

adaptive evolution experiments: trajectories E1, E2, and E3. E1 and E2 were performed at

30 8C and E3 at 37 8C. The glycerol concentration was kept constant at 2 g l21 during E1,

E2 and E3. b, The PPP pre-evolution. The LO is shown in red. The range of glycerol

concentrations used was 0.25–2 g l21. c, The PPP during adaptive evolution.

Experimental values for E1 are indicated in blue, and for E2 they are indicated in green,

and for E3 in red. The starting point of evolution for E1 and E2 is indicated in black (day 0).

d, The PPP after 40 days (about 700 generations) of evolution. The range of glycerol

concentrations used was 0.25–2 g l21. e, The PPP after 60 days (1,000 generations) of

evolution. The range of glycerol concentrations used was 0.25–2 g l21. Data points were

obtained using the E1 (blue) and E2 (green) strains. Gl-UR, glycerol uptake rate.

Figure 3 Growth of E. coli K-12 on glucose. a, The glucose–oxygen PPP. Like the malate–

oxygen PPP, phase 1 represents sub-optimal growth and phase 2 is characterized by

acetate overflow metabolism. The LO is shown in red. b, GUR plotted against OUR along

with experimental values for adaptive evolution experiments. Open circles represent

measurements during the adaptive evolutionary process, whereas blue circles indicate

the beginning and end of evolution. c, Three-dimensional rendering of computed growth

rate and the experimental data (from a and b). The x and y axes represent the GUR and

OUR. The z axis represents the cellular growth rate (h21).
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Selection pressure is expected to result in optimal performance
through an evolutionary process. Optimal growth of E. coli on
acetate, succinate, malate and glucose is consistent with the predic-
tions of whole-cell in silico models. The strain used here has
presumably never had to compete for survival using glycerol as
the sole carbon source and thus initially utilized this carbon source
non-optimally. However, adaptive evolution on glycerol resulted in
the a priori calculated optimal growth that was based on the
constraints placed on the E. coli metabolic network. The adaptive
evolutionary process had a reproducible and predictable endpoint.

This study opens up several possibilities. First, it may now be
possible to specify optimal network properties in silico and achieve
them through an adaptive evolutionary process or in combination
with a series of other methodologies. In silico design of micro-
organisms could be used to improve their metabolic abilities,
production efficiency and/or operational longevity. Second,
changes in mRNA expression levels and DNA sequences can now
be monitored as cells progress along a defined evolutionary path.
Such experiments may yield valuable insight into the molecular
design of complex control circuits and their adaptation during
evolution. The combination of in silico and experimental biology
introduced here may make a new series of biological designs
attainable.

Constraint-based computational models use an optimization-
based procedure to predict cellular states. It is assumed that this
optimal state, within the governing constraints, is found by altering
the numerical values of the kinetic and regulatory constants
through a ‘trial-and-error’ process. This feature of constraint-
based models is a significant departure from other types of math-
ematical models of cell function, where these parameters are treated
as being time-invariant. Thus constraint-based models directly
account for the fundamental nature of adaptive evolution. The
adaptive evolutionary path itself cannot be predicted; however, the
final outcome can be. A

Methods
Strains and media
The E. coli K-12 MG1655 annotated genome sequence and the biochemical literature were
used to construct the in silico E. coli strain1,3,12. We simulated the metabolic capabilities as
previously described with the objective of maximizing growth12,14,21. Both growth and
maintenance requirements were imposed on the in silico model12–14. The growth
experiments were done in M9 minimal medium with the addition of the carbon source.
The growth rate was varied by changing the concentration of the carbon source (ranging
from 0.25 to 3 g l21) and the temperature (ranging from 29 8C to 37 8C). E. coli MG1655
(ATCC #47076) was used for all of the experiments.

Batch cultures were set up at two different volume scales. One-litre (large) cultures
were performed in 1.5-l Erlenmeyer flasks sparging with air. The large-volume batch
cultures were used to continuously monitor the oxygen uptake rate (OUR) online with an
off-gas analyser. Small (100–250 ml) cultures were grown in 500–1,000 ml Erlenmeyer
flasks. For the small-scale cultures the OUR was monitored online polarographically and
by measuring the mass transfer coefficient for oxygen (k la) (see below). The temperature
was controlled by using a circulating water bath (Haake). We measured and analysed data
during exponential growth. The biomass and the concentration of the substrate (malate,
glucose, glycerol) in the media were monitored throughout the experiment.

Analytical procedures
Cellular growth rate was monitored by measuring the absorbance (A, or optical density) at
600 nm and 420 nm and by cell counts (Coulter Electronics). The doubling time was
calculated from the growth rate: td ¼ ln(2)/m. Absorbance to cellular dry weight
correlations were determined by two different measurements: (1) spun-down cells were
dried at 75 8C to a constant weight; and (2) 25–50 ml samples (taken throughout the
culture) were filtered, washed and dried to a constant weight. The concentration of
metabolites in the culture media was determined by high-performance liquid
chromatography (HPLC) (Rainin Instruments). An aminex HPX-87H ion exchange
carbohydrate–organic acid column (Bio-Rad Laboratories) (65 8C) was used with
degassed 5 mM sulphuric acid as the mobile phase and ultraviolet detection. Glucose and
glycerol were monitored by enzymatic assay (Sigma). The dissolved oxygen in the culture
was monitored with a polarographic dissolved oxygen probe (Cole-Parmer Instruments).
Oxygen consumption was measured in three different ways: (1) passing the effluent gas
through a Servomex oxygen analyser (model 1140C) (Servomex); (2) calculated from the
dissolved oxygen reading and k la measurements; and (3) in a respirometer chamber in a
separate 70-ml flask. All three methods used for measuring the OUR gave similar and
reproducible results.

Adaptive evolution
Cultures in prolonged exponential growth were started from individual colonies and were
grown in micro-carrier spinner flasks at 250 ml within a temperature-controlled
incubator. Serial transfers were made during the exponential phase of growth at mid-log-
phase (A 600 nm ¼ 0.55) using an adjusted inoculum volume based on the growth rate of
the culture. On a daily basis, the growth rate, time of inoculation, A 600 nm of the culture,
and any visual changes in the composition of the culture were recorded. Samples of
cultures were stored on a daily basis. The culture was tested weekly for pH and phenotyped
(by plating) for any signs of coexistence with a distinct population of mutants or foreign
contamination. No discernible differences in colony morphology or signs of foreign
contamination were observed during these experiments.

Phenotype phase plane analysis
First, the metabolic reconstruction was done using biochemistry, genomic and
physiological data3–5. Second, mass balance, capacity and thermodynamic constraints were
imposed on the network to define a solution space13. Third, the best use of the metabolic
network for a given objective was identified using linear optimization16–18. Fourth, all
optimal solutions as a function of two constraints were presented on the PPP21. The PPP
has distinct phases. Each phase corresponds to a particular type of an optimal solution,
which in turn represents a particular flux distribution through the network. Each phase
has certain metabolic characteristics; for instance, phase 2 in the figures presented here was
characterized by an acetate overflow. The lines that demarcate the phases were defined by
changes in the shadow price structure of the optimal solution. The properties of the PPP
have been detailed elsewhere21. In this study, the optimal utilization of the metabolic
network was predicted a priori, based on a previously developed in silico model12,14.
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