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Statistics

SCOPe 2.08-stable statistics:
106976 PDB entries (released/updated prior to 2021-07-28). 344851 Domains. 1 Literature reference.

Class Number of folds|Number of superfamilies| Number of families
a: All alpha proteins 290 519 1089

b: All beta proteins 180 375 993

c: Alpha and beta proteins (a/b) 148 247 1003

d: Alpha and beta proteins (a+b) 396 580 1387

e: Multi-domain proteins (alpha and beta) 74 74 128

f: Membrane and cell surface proteins and peptides|69 131 204

g: Small proteins 100 141 280

Totals 1257 (26 new) |2067 (42 new) 5084 (88 new)

Stats for the latest periodic (info) release, SCOPe 2.08-2022-02-10 (adding PDB entries released/updated prior to 2022-02-10):
107643 PDB entries. 346905 Domains. 1 Literature reference.
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Number of Entries
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The EMBO Journal vol.5 no.4 pp.823—826, 1986

The relation between the divergence of sequence and structure in
proteins

Cyrus Chothia! and Arthur M.Lesk?
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Discrete folds
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Figure 1. The 15 most populated folds. They were sclected on the basis of a structural annotation of protans from completdy
sequenced genomes of 20 bacterma, five Archaca, and three cukaryotes [C. Zhang, unpubhshed data]. From left to night and top to
bottom, they are: ferredoxin-like (4.45%) (A4), TIM-barrel (3.94%) (B), P-loop containing nucdcotide tniphosphate hydralase (3.71%) (),
protem kinases (PK) catalytic domam (3.14%9 (D), NAD(P)-binding Rmnann«fold domains (2.80%) (E), DNA RNA-binding 3-helical

bundle (2.60%) (F), x-x superhelix (1.95%) (G), S-ad; +L-meth hyltransf (192%) (H), T-bladed beta-pro-
peller (1.85%) (), 2/ f-hydrolases (1.84%) Ui. PLP-dtpmdenl transferase (1.61%) (K), adenine nudcotide 2-hydrolase (1.59%) (L),
flavodoxin-hike (1.49%) (M), globul # dwich (1.38%) (N}, and glucocorticoid receptor-like (0.97%) (0), where the

values in parentheses are the percentages of mnoul:d proteins adoptmg the respective folds.



On the Universe of Protein

Folds

Rachel Kolodny,! Leonid Pereyaslavets,’
Abraham O. Samson,’ and Michael Levitt?

Annu. Rev. Biophys. 2013. 42:559-82
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Fig. 5. Fold space attrac-
tors. (A) Quantification of
the pairwise structural
similarities in an all-on-all
comparison of protein
structures allows one to
position each structure
relative to the others in
an abstract, high-dimen-
sional fold space (shape
space). The height of the
peaks reflects popula-
tion density (of folds in
fold space). The horizon-
tal axes are the two
dominant eigenvalues (21), and the vertical axis represents the number
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SSM: sequence structure maps

’ a/B RESEARCH ARTICLE BIOPHYSICS AND COMPUTATIONAL BIOLOGY o

[ © A global representation of the protein fold

space




SSM: sequence structure maps
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Evolution of protein structural classes and
protein sequence families

In-Geol Choi and Sung-Hou Kim 8 Authors Info & Affiliations

September 19, 2006 103 (38) 14056-14061 = https://doi.org/10.1073/pnas.0606239103




Traversing sequence space
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Current Opinion in Structral Biology
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Non transitivity of structure-based alignments
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Current Opinion in Structural Biology

Nontransitivity of structure-based alignments. Unlike homology-based alignments, alignments guided purely by structure geometry do not necessarily
have the property of transitivity. Structure-based alignment of fragments of three protein chains (colored white, black, and gray, with circles

representing C-alpha atoms) is schematically shown. Residues are aligned based on the criterion of minimal distance (marked by dotted lines). In this
example, pairwise alignments between residues A, B, and C (marked with asterisks both in the schema and in the alignments below) are not transitive:

A is aligned to B and B to C, yet A and C are not aligned.




Biophysical Journal Volume 73 November 1997 2393-2403

How Are Model Protein Structures Distributed in Sequence Space?

Erich Bornberg-Bauer

Abteilung 0815 Theoretische Bioinformatik, Deutsches Krebsforschungszentrum Im Neuenheimer Feld 280,

Heidelberg, D-69120, Germany

FIGURE 1 Examples of frequent structures. Left: The most frequent
structure as formed by a typical sequence. Closed circles denote H's, open
circles P’s, solid lines correspond to peptide bonds connecting two subse-
quent residues, dashed lines are energy-contributing contacts between 2
H'’s. Letters along the bonds [F (forward), L (left), and R (right)] denote the
corresponding relative moves. Squares symbolize the first residue since the
structure is not considered identical as the results from reverse sequences.
The first move is F by definition, the first non-F move R. The structure can
be encoded as FRFLLRLLRLRLLRLFL. Frequent motifs are boxed (see
text). Right: The most frequent maximum compact structure. It can be
encoded as FRLRFRRLRLRLLFLRL.
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Zipf distribution of structures
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FIGURE 2 The frequency distribution of structures. Zipf plot showing
the log of the frequence distribution of structures versus the log of their
rank r. Results for ground states of uniquely folding sequences are shown
for chain lengths n = 13 (dotted), 16 (dashed), and 18 (solid line).
Corresponding fits to a generalized Zipf’s law are drawn in thin lines.
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How Are Model Protein Structures Distributed in Sequence Space?
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Cite this article: Sikosek T, Chan HS. 2014
Biophysics of protein evolution and evolution-
ary protein biophysics. J. R. Soc. Interface 11:
20140419.
http://dx.doi.org/10.1098/rsif.2014.0419

neutral nets

(a) foldable sequence space (b) neutral networks
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thermodynamic stability and mutational robustness



Mutational stability, prototype sequences and
neutral nets
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